Abstract

Integrated optics potentially can offer significant cost reductions and new applications to Optical Coherence Tomography (OCT). We design, fabricate, and characterize Silicon oxynitride (SiON) elliptic couplers, which can be used to focus light from a chip into the off-chip environment. Fizeau-based OCT measurements are performed with elliptic couplers and a moveable mirror. The optical fields at the output of the elliptic coupler are simulated and measured. Good agreement is observed between the measured OCT signal as a function of depth and calculations based on the optical field at the end of the elliptic coupler.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, "Optical coherence tomography," Science 267, 1178-1181 (1991).
  2. K. M. Tan, "In-fiber common-path optical coherence tomography using a conical-tip fiber," Opt. Exp. 17, 2375-2384 (2009).
  3. B. D. Goldberg, S. M. R. M. Nezam, P. Jillella, B. E. Bouma, G. J. Tearney, "Miniature swept source for point of care optical frequency domain imaging," Opt. Exp. 17, 3619-3629 (2009).
  4. D. Culemann, A. Knuettel, E. Voges, "Integrated optical sensor in glass for optical coherence tomography (OCT)," IEEE J. Select. Topics Quantum Electron. 6, 730-734 (2000).
  5. S. Ura, Y. Furukawa, T. Suhara, H. Nishihara, "Linearly focusing grating coupler for integrated-optic parallel pickup," J. Opt. Soc. Amer. A 7, 1759-1763 (1990).
  6. P. R. Ashley, W. S. C. Chang, "Fresnel lens in a thin-film waveguide," Appl. Phys. Lett. 33, 490-492 (1993).
  7. D. Y. Zang, "Waveguide optical planar lenses in LiNbO$_{3}$—Theory and experiments," Opt. Commun. 47, 248-250 (1983).
  8. J.-M. Verdiell, M. A. Newkirk, T. L. Koch, R. P. Gnall, U. Koren, B. I. Miller, L. L. Buhl, "Aspheric waveguide lenses for photonic integrated circuits," Appl. Phys. Lett. 62, 808-810 (1993).
  9. J. H. Kim, "A collimation mirror in polymeric planar waveguide formed by reactive ion etching," IEEE Photon. Technol. Lett. 15, 422-424 (2003).
  10. C. Wei, F. Groen, M. K. Smit, I. Moerman, P. V. Daele, R. Baets, "Integrated opical elliptic couplers: Modeling, design, and applications," J. Lightw. Technol. 15, 906-912 (1997).
  11. K. Wörhoff, C. G. K. Roeloffzen, R. M. de Ridder, A. Driessen, P. V. Lambeck, "Design and application of compact and highly tolerant polarization-independent waveguides," J. Lightw. Technol. 25, 1276-1283 (2007).
  12. A. B. Vakhtin, D. J. Kane, W. R. Wood, K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Optics 42, 6953-6958 (2003).
  13. R. März, Integrated Optics: Design and Modeling (Artech House, 1995).
  14. J. M. Khosrofian, B. A. Garetz, "Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data," Appl. Optics 22, 3406-3409 (1983).
  15. J. Kalkman, A. V. Bykov, D. J. Faber, T. G. van Leeuwen, "Multiple and dependent scattering effects in Doppler optical coherence tomography," Opt. Exp. 18, 3883-3892 (2010).
  16. N. A. Nassif, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Exp. 12, 367-376 (2004).
  17. T. G. van Leeuwen, D. J. Faber, M. C. Aalders, "Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography," IEEE J. Sel. Topic Quantum Electron. 9, 227-233 (2003).
  18. S. Yuan, N. A. Riza, "General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses," Appl. Opt. 38, 3214-3222 (1999).
  19. H. Kogelnik, T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1567 (1966).
  20. I. Moerman, P. P. van Daele, P. M. Demeester, "A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices," IEEE Sel. Top. Quantum Electron. 3, 1308-1320 (1997).

2010 (1)

J. Kalkman, A. V. Bykov, D. J. Faber, T. G. van Leeuwen, "Multiple and dependent scattering effects in Doppler optical coherence tomography," Opt. Exp. 18, 3883-3892 (2010).

2009 (2)

K. M. Tan, "In-fiber common-path optical coherence tomography using a conical-tip fiber," Opt. Exp. 17, 2375-2384 (2009).

B. D. Goldberg, S. M. R. M. Nezam, P. Jillella, B. E. Bouma, G. J. Tearney, "Miniature swept source for point of care optical frequency domain imaging," Opt. Exp. 17, 3619-3629 (2009).

2007 (1)

K. Wörhoff, C. G. K. Roeloffzen, R. M. de Ridder, A. Driessen, P. V. Lambeck, "Design and application of compact and highly tolerant polarization-independent waveguides," J. Lightw. Technol. 25, 1276-1283 (2007).

2004 (1)

N. A. Nassif, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Exp. 12, 367-376 (2004).

2003 (3)

T. G. van Leeuwen, D. J. Faber, M. C. Aalders, "Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography," IEEE J. Sel. Topic Quantum Electron. 9, 227-233 (2003).

A. B. Vakhtin, D. J. Kane, W. R. Wood, K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Optics 42, 6953-6958 (2003).

J. H. Kim, "A collimation mirror in polymeric planar waveguide formed by reactive ion etching," IEEE Photon. Technol. Lett. 15, 422-424 (2003).

2000 (1)

D. Culemann, A. Knuettel, E. Voges, "Integrated optical sensor in glass for optical coherence tomography (OCT)," IEEE J. Select. Topics Quantum Electron. 6, 730-734 (2000).

1999 (1)

1997 (2)

C. Wei, F. Groen, M. K. Smit, I. Moerman, P. V. Daele, R. Baets, "Integrated opical elliptic couplers: Modeling, design, and applications," J. Lightw. Technol. 15, 906-912 (1997).

I. Moerman, P. P. van Daele, P. M. Demeester, "A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices," IEEE Sel. Top. Quantum Electron. 3, 1308-1320 (1997).

1993 (2)

P. R. Ashley, W. S. C. Chang, "Fresnel lens in a thin-film waveguide," Appl. Phys. Lett. 33, 490-492 (1993).

J.-M. Verdiell, M. A. Newkirk, T. L. Koch, R. P. Gnall, U. Koren, B. I. Miller, L. L. Buhl, "Aspheric waveguide lenses for photonic integrated circuits," Appl. Phys. Lett. 62, 808-810 (1993).

1991 (1)

D. Huang, "Optical coherence tomography," Science 267, 1178-1181 (1991).

1990 (1)

S. Ura, Y. Furukawa, T. Suhara, H. Nishihara, "Linearly focusing grating coupler for integrated-optic parallel pickup," J. Opt. Soc. Amer. A 7, 1759-1763 (1990).

1983 (2)

D. Y. Zang, "Waveguide optical planar lenses in LiNbO$_{3}$—Theory and experiments," Opt. Commun. 47, 248-250 (1983).

J. M. Khosrofian, B. A. Garetz, "Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data," Appl. Optics 22, 3406-3409 (1983).

1966 (1)

Appl. Opt. (2)

Appl. Optics (2)

A. B. Vakhtin, D. J. Kane, W. R. Wood, K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Optics 42, 6953-6958 (2003).

J. M. Khosrofian, B. A. Garetz, "Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data," Appl. Optics 22, 3406-3409 (1983).

Appl. Phys. Lett. (2)

P. R. Ashley, W. S. C. Chang, "Fresnel lens in a thin-film waveguide," Appl. Phys. Lett. 33, 490-492 (1993).

J.-M. Verdiell, M. A. Newkirk, T. L. Koch, R. P. Gnall, U. Koren, B. I. Miller, L. L. Buhl, "Aspheric waveguide lenses for photonic integrated circuits," Appl. Phys. Lett. 62, 808-810 (1993).

IEEE J. Sel. Topic Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, M. C. Aalders, "Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography," IEEE J. Sel. Topic Quantum Electron. 9, 227-233 (2003).

IEEE J. Select. Topics Quantum Electron. (1)

D. Culemann, A. Knuettel, E. Voges, "Integrated optical sensor in glass for optical coherence tomography (OCT)," IEEE J. Select. Topics Quantum Electron. 6, 730-734 (2000).

IEEE Photon. Technol. Lett. (1)

J. H. Kim, "A collimation mirror in polymeric planar waveguide formed by reactive ion etching," IEEE Photon. Technol. Lett. 15, 422-424 (2003).

IEEE Sel. Top. Quantum Electron. (1)

I. Moerman, P. P. van Daele, P. M. Demeester, "A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices," IEEE Sel. Top. Quantum Electron. 3, 1308-1320 (1997).

J. Lightw. Technol. (2)

C. Wei, F. Groen, M. K. Smit, I. Moerman, P. V. Daele, R. Baets, "Integrated opical elliptic couplers: Modeling, design, and applications," J. Lightw. Technol. 15, 906-912 (1997).

K. Wörhoff, C. G. K. Roeloffzen, R. M. de Ridder, A. Driessen, P. V. Lambeck, "Design and application of compact and highly tolerant polarization-independent waveguides," J. Lightw. Technol. 25, 1276-1283 (2007).

J. Opt. Soc. Amer. A (1)

S. Ura, Y. Furukawa, T. Suhara, H. Nishihara, "Linearly focusing grating coupler for integrated-optic parallel pickup," J. Opt. Soc. Amer. A 7, 1759-1763 (1990).

Opt. Commun. (1)

D. Y. Zang, "Waveguide optical planar lenses in LiNbO$_{3}$—Theory and experiments," Opt. Commun. 47, 248-250 (1983).

Opt. Exp. (4)

J. Kalkman, A. V. Bykov, D. J. Faber, T. G. van Leeuwen, "Multiple and dependent scattering effects in Doppler optical coherence tomography," Opt. Exp. 18, 3883-3892 (2010).

N. A. Nassif, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Exp. 12, 367-376 (2004).

K. M. Tan, "In-fiber common-path optical coherence tomography using a conical-tip fiber," Opt. Exp. 17, 2375-2384 (2009).

B. D. Goldberg, S. M. R. M. Nezam, P. Jillella, B. E. Bouma, G. J. Tearney, "Miniature swept source for point of care optical frequency domain imaging," Opt. Exp. 17, 3619-3629 (2009).

Science (1)

D. Huang, "Optical coherence tomography," Science 267, 1178-1181 (1991).

Other (1)

R. März, Integrated Optics: Design and Modeling (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.