Abstract

A method of integral equations (IE) is applied to a simulation of diffraction efficiency (DE) of metal-dielectric and all-dielectric diffraction gratings (DG). Two factors narrowing the spectral band of laser pulse reflection into minus first space harmonics (MFSH) are analyzed. It is found that by using a chirped mirror instead of a multilayer all-dielectric one it is possible to make diffracted spectrum 20–30 nm wider.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys. 36, 1038-1040 (1991).
  2. J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, "High efficiency dielectric multilayer gratings optimized for anufacturability and laser damage threshold," Proc. SPIE 2714 (1996) pp. 511-520.
  3. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Amer. A 14, 1124-1136 (1997).
  4. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, H. Heyer, "High-efficiency dielectric reflection gratings: Design, fabrication, and analysis," Appl. Opt. 38, 6257-6271 (1999).
  5. A. V. Tishchenko, V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1103 (2000).
  6. B. Touzet, J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photon. Spectra 37, 68-75 (2003).
  7. J. Néauport, N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).
  8. M. Flury, A. V. Tishchenko, O. Parriaux, "The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings," J. Lightw. Technol. 25, 1870-1878 (2007).
  9. F. Canova, J. P. Chambaret, O. Uteza, P. Delaporte, M. Tondusson, E. Freysz, O. Parriaux, M. Flury, S. Tonchev, N. Lyndin, "${>}97\hbox{\%}$ top-hat efficiency, ${>}4$ J/cm$^2$ damage threshold compression gratings," Proc. Int. Conf. Ultrahigh Intensity Lasers (2006).
  10. F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, O. Parriaux, "High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression," Opt. Exp. 15, 15324-15334 (2007).
  11. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, A. Apolonski, "High-dispersive mirrors for femtosecond lasers," Opt. Exp. 16, 10220-10233 (2008).
  12. http://luxpop.com/#Arb_Reflection_Complex.
  13. A. G. Schuchinsky, D. Zelenchuk, A. M. Lerer, R. Dickie, "Full-wave analysis of layered aperture arrays," IEEE Trans. Antennas Propagat. 54, 490-502 (2006).
  14. C. C. Cutler, "Genesis of the corrugated electromagnetic surface (corrugated waveguide)," Proc. IEEE Antennas Propag. Soc. Int. Symp. (1994) pp. 1456-1459.
  15. R. S. Elliot, "On the theory of corrugated plane surfaces," IRE Trans. Antennas Propag. 2, 71-81 (1954).
  16. W. Rotman, "A study of single-surface corrugated guides," Proc. IRE 39, 952-959 (1951).
  17. B. Noble, Method Based On the Wiener-Hopf Technique for the Solution of Partial Differential Equations London (Pergamon, 1958).
  18. S. V. Boriskina, P. Sewell, T. M. Benson, A. I. Nosich, "Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Opt. Soc. Amer. A 21, 393-402 (2004).
  19. G. A. Kalinchenko, A. M. Lerer, "Investigations of dielectric gratings using electrodynamic models based on volume integral equations," J. Commun. Technol. Electron. 48, 1221 (2003).

2008 (1)

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, A. Apolonski, "High-dispersive mirrors for femtosecond lasers," Opt. Exp. 16, 10220-10233 (2008).

2007 (2)

M. Flury, A. V. Tishchenko, O. Parriaux, "The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings," J. Lightw. Technol. 25, 1870-1878 (2007).

F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, O. Parriaux, "High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression," Opt. Exp. 15, 15324-15334 (2007).

2006 (2)

J. Néauport, N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).

A. G. Schuchinsky, D. Zelenchuk, A. M. Lerer, R. Dickie, "Full-wave analysis of layered aperture arrays," IEEE Trans. Antennas Propagat. 54, 490-502 (2006).

2004 (1)

S. V. Boriskina, P. Sewell, T. M. Benson, A. I. Nosich, "Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Opt. Soc. Amer. A 21, 393-402 (2004).

2003 (2)

G. A. Kalinchenko, A. M. Lerer, "Investigations of dielectric gratings using electrodynamic models based on volume integral equations," J. Commun. Technol. Electron. 48, 1221 (2003).

B. Touzet, J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photon. Spectra 37, 68-75 (2003).

2000 (1)

A. V. Tishchenko, V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1103 (2000).

1999 (1)

1997 (1)

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Amer. A 14, 1124-1136 (1997).

1991 (1)

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys. 36, 1038-1040 (1991).

1954 (1)

R. S. Elliot, "On the theory of corrugated plane surfaces," IRE Trans. Antennas Propag. 2, 71-81 (1954).

1951 (1)

W. Rotman, "A study of single-surface corrugated guides," Proc. IRE 39, 952-959 (1951).

Appl. Opt. (1)

IEEE Trans. Antennas Propagat. (1)

A. G. Schuchinsky, D. Zelenchuk, A. M. Lerer, R. Dickie, "Full-wave analysis of layered aperture arrays," IEEE Trans. Antennas Propagat. 54, 490-502 (2006).

IRE Trans. Antennas Propag. (1)

R. S. Elliot, "On the theory of corrugated plane surfaces," IRE Trans. Antennas Propag. 2, 71-81 (1954).

J. Commun. Technol. Electron. (1)

G. A. Kalinchenko, A. M. Lerer, "Investigations of dielectric gratings using electrodynamic models based on volume integral equations," J. Commun. Technol. Electron. 48, 1221 (2003).

J. Lightw. Technol. (1)

M. Flury, A. V. Tishchenko, O. Parriaux, "The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings," J. Lightw. Technol. 25, 1870-1878 (2007).

J. Opt. Soc. Amer. A (2)

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Amer. A 14, 1124-1136 (1997).

S. V. Boriskina, P. Sewell, T. M. Benson, A. I. Nosich, "Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Opt. Soc. Amer. A 21, 393-402 (2004).

J. Phys. IV France (1)

J. Néauport, N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).

Opt. Exp. (2)

F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, O. Parriaux, "High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression," Opt. Exp. 15, 15324-15334 (2007).

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, A. Apolonski, "High-dispersive mirrors for femtosecond lasers," Opt. Exp. 16, 10220-10233 (2008).

Opt. Quantum Electron. (1)

A. V. Tishchenko, V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1103 (2000).

Photon. Spectra (1)

B. Touzet, J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photon. Spectra 37, 68-75 (2003).

Proc. IRE (1)

W. Rotman, "A study of single-surface corrugated guides," Proc. IRE 39, 952-959 (1951).

Sov. Phys. Tech. Phys. (1)

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys. 36, 1038-1040 (1991).

Other (5)

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, "High efficiency dielectric multilayer gratings optimized for anufacturability and laser damage threshold," Proc. SPIE 2714 (1996) pp. 511-520.

F. Canova, J. P. Chambaret, O. Uteza, P. Delaporte, M. Tondusson, E. Freysz, O. Parriaux, M. Flury, S. Tonchev, N. Lyndin, "${>}97\hbox{\%}$ top-hat efficiency, ${>}4$ J/cm$^2$ damage threshold compression gratings," Proc. Int. Conf. Ultrahigh Intensity Lasers (2006).

B. Noble, Method Based On the Wiener-Hopf Technique for the Solution of Partial Differential Equations London (Pergamon, 1958).

http://luxpop.com/#Arb_Reflection_Complex.

C. C. Cutler, "Genesis of the corrugated electromagnetic surface (corrugated waveguide)," Proc. IEEE Antennas Propag. Soc. Int. Symp. (1994) pp. 1456-1459.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.