Abstract

An opto-electronic oscillator is a microwave oscillator in which the resonator is replaced with an optical fiber delay-line carrying an intensity-modulated laser beam. We consider the frequency and power fluctuations of a standard DFB telecom laser, and we investigate their effect on the phase noise of microwaves generated with opto-electronic oscillators. We propose a theoretical study showing how these two laser fluctuations are converted into phase noise in the output microwave. This theory predicts that the power noise should have a minor contribution to microwave phase noise, while the wavelength fluctuations should strongly contribute to phase noise via the chromatic dispersion of the few kilometers long optical fiber delay line. We have experimentally confirmed the validity of this theory by measuring the relative intensity noise and the optical frequency noise of a semiconductor laser, which has later been used for microwave generation. We show that the use of a zero-dispersion fiber delay-line can lead to a 10 dB improvement of the phase noise performance, relatively to the case were a standard single mode fiber is used.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. X. S. Yao, L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Amer. B 13, 1725-1735 (1996).
  2. X. S. Yao, L. Maleki, "Optoelectronic oscillator for photonic systems," IEEE J. Quantum Electron. 32, 1141-1149 (1996).
  3. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. B. Matsko, L. Maleki, "Stabilizing an optoelectronic microwave oscillator with photonic filters," J. Lightw. Technol. 21, 3052-3061 (2003).
  4. Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: A Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).
  5. E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge Univ. Press, 2008).
  6. E. Rubiola, The Measurement of AM Noise of Oscillators (2005) arXiv:physics/0512082v1.
  7. E. Rubiola, F. Vernotte, “The cross-spectrum experimental method,” (2010) arXiv:1003.0113v1 [physics.ins-det].
  8. K. Volyanskiy, L. Larger, P. Salzenstein, E. Rubiola, "Dual-channel measurement of laser RIN spectrum," Proc. IFCS-EFTF Joint Conf. (2009) pp. 50-53.
  9. E. Rubiola, E. Salik, N. Yu, L. Maleki, "Flicker noise in high-speed photodetectors," IEEE Trans. Microw. Theory Techn. 54, 816-820 (2006).
  10. D. A. Tulchinsky, K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).
  11. W. Shieh, L. Maleki, "Phase noise characterization by carrier suppression techniques in RF photonic systems," IEEE Photon. Technol. Lett. 17, 474-476 (2005).
  12. K. Volyanskiy, J. Cussey, H. Tavernier, P. Salzenstein, G. Sauvage, L. Larger, E. Rubiola, "Applications of the optical fiber to the generation and to the measurement of low-phase-noise microwave signals," J. Opt. Soc. Amer. B 25, 2140-2150 (2008).
  13. Y. K. Chembo, A. Hmima, P.-A. Lacourt, L. Larger, J. M. Dudley, "Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression," J. Lightw. Technol. 27, 5160-5167 (2009).

2009 (2)

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: A Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).

Y. K. Chembo, A. Hmima, P.-A. Lacourt, L. Larger, J. M. Dudley, "Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression," J. Lightw. Technol. 27, 5160-5167 (2009).

2008 (1)

K. Volyanskiy, J. Cussey, H. Tavernier, P. Salzenstein, G. Sauvage, L. Larger, E. Rubiola, "Applications of the optical fiber to the generation and to the measurement of low-phase-noise microwave signals," J. Opt. Soc. Amer. B 25, 2140-2150 (2008).

2006 (1)

E. Rubiola, E. Salik, N. Yu, L. Maleki, "Flicker noise in high-speed photodetectors," IEEE Trans. Microw. Theory Techn. 54, 816-820 (2006).

2005 (2)

D. A. Tulchinsky, K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).

W. Shieh, L. Maleki, "Phase noise characterization by carrier suppression techniques in RF photonic systems," IEEE Photon. Technol. Lett. 17, 474-476 (2005).

2003 (1)

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. B. Matsko, L. Maleki, "Stabilizing an optoelectronic microwave oscillator with photonic filters," J. Lightw. Technol. 21, 3052-3061 (2003).

1996 (2)

X. S. Yao, L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Amer. B 13, 1725-1735 (1996).

X. S. Yao, L. Maleki, "Optoelectronic oscillator for photonic systems," IEEE J. Quantum Electron. 32, 1141-1149 (1996).

IEEE J. Quantum Electron. (2)

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, P. Colet, "Determination of phase noise spectra in optoelectronic microwave oscillators: A Langevin approach," IEEE J. Quantum Electron. 45, 178-186 (2009).

X. S. Yao, L. Maleki, "Optoelectronic oscillator for photonic systems," IEEE J. Quantum Electron. 32, 1141-1149 (1996).

IEEE Photon. Technol. Lett. (2)

D. A. Tulchinsky, K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).

W. Shieh, L. Maleki, "Phase noise characterization by carrier suppression techniques in RF photonic systems," IEEE Photon. Technol. Lett. 17, 474-476 (2005).

IEEE Trans. Microw. Theory Techn. (1)

E. Rubiola, E. Salik, N. Yu, L. Maleki, "Flicker noise in high-speed photodetectors," IEEE Trans. Microw. Theory Techn. 54, 816-820 (2006).

J. Lightw. Technol. (2)

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. B. Matsko, L. Maleki, "Stabilizing an optoelectronic microwave oscillator with photonic filters," J. Lightw. Technol. 21, 3052-3061 (2003).

Y. K. Chembo, A. Hmima, P.-A. Lacourt, L. Larger, J. M. Dudley, "Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression," J. Lightw. Technol. 27, 5160-5167 (2009).

J. Opt. Soc. Amer. B (2)

K. Volyanskiy, J. Cussey, H. Tavernier, P. Salzenstein, G. Sauvage, L. Larger, E. Rubiola, "Applications of the optical fiber to the generation and to the measurement of low-phase-noise microwave signals," J. Opt. Soc. Amer. B 25, 2140-2150 (2008).

X. S. Yao, L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Amer. B 13, 1725-1735 (1996).

Other (4)

E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge Univ. Press, 2008).

E. Rubiola, The Measurement of AM Noise of Oscillators (2005) arXiv:physics/0512082v1.

E. Rubiola, F. Vernotte, “The cross-spectrum experimental method,” (2010) arXiv:1003.0113v1 [physics.ins-det].

K. Volyanskiy, L. Larger, P. Salzenstein, E. Rubiola, "Dual-channel measurement of laser RIN spectrum," Proc. IFCS-EFTF Joint Conf. (2009) pp. 50-53.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.