Abstract

We demonstrate a novel technique for the interrogation of grating-based fiber optic sensors. The proposed technique is based on space-to-wavelength mapping using an arrayed waveguide grating (AWG). The beam position along the AWG input coupler is controlled by a closed-loop piezoelectric motor. By employing a real-time position feedback encoder, the absolute position of the input light beam can be accurately obtained, which would yield a precise interrogation of the wavelength due to a fixed relationship between the beam position and the transmission wavelength of the AWG channel. The proposed system for the interrogation of fiber Bragg grating (FBG) sensors and a tilted-FBG sensor is experimented. An interrogation resolution of 3 pm and an interrogation range of 18 nm are demonstrated as well as the multichannel measurement capability. Initial results show that the proposed interrogation system has the potential of being packaged into a compact, light weight, and cost-effective interrogator with good performance.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription