Abstract

We report on an integrated photonic transmitter of up to 100 MHz repetition rate, which emits pulses centered at 850 nm with arbitrary amplitude and polarization. The source is suitable for free space quantum key distribution applications. The whole transmitter, with the optical and electronic components integrated, has reduced size and power consumption. In addition, the optoelectronic components forming the transmitter can be space-qualified, making it suitable for satellite and future space missions.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. H. Carbonneau, D. R. Wisely, "Opportunities and challenges for optical wireless: The competitive advantage of free space telecommunications links in today's crowded marketplace," Proc. SPIE Wireless Technologies and Systems: Millimeter-Wave and Optical 3232, 119-128 (1998).
  2. T. Garlington, J. Babbitt, G. Long, Analysis of Free Space Optics as a Transmission Technology U.S. Army Information Systems Engineering Command (USAISEC), Transmission Systems Directorate (2005) Tech. Rep. AMSEL-IE-TS-05001.
  3. D. O'Brien, G. Faulkner, K. Jim, E. Zyambo, D. Edwards, M. Whitehead, P. Stavrinou, G. Parry, J. Bellon, M. Sibley, V. Lalithambika, V. Joyner, R. Samsudin, D. Holburn, R. Mears, "High-speed integrated transceivers for optical wireless," IEEE Commun. Mag. 41, 58-62 (2003).
  4. C. Davis, I. Smolyaninov, S. Milner, "Flexible optical wireless links and networks," IEEE Commun. Mag. 41, 51-57 (2003).
  5. V. Scarani, S. Iblisdir, N. Gisin, A. Acín, "Quantum cloning," Rev. Mod. Phys. 77, 1225-1256 (2005).
  6. C. H. Bennett, G. Brassard, "Quantum cryptography: Public-key distribution and coin tossing," Proc. IEEE Int. Conf. Comput., Syst. Signal Process. (1984) pp. 175-179.
  7. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, "Experimental quantum cryptography," J. Crypt. 5, 3-28 (1992).
  8. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys. 81, 1301 (2008).
  9. H.-K. Lo, X. Ma, K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
  10. X. Ma, B. Qi, Y. Zhao, H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
  11. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, "Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate," Opt. Exp. 16, 18 790-18 979 (2008).
  12. T.-Y. Chen, J. Wang, Y. Liu, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, "200 km Decoy-state quantum key distribution with photon polarization," arXiv:0908.4063v1 (2009).
  13. T. Schmitt-Manderbach, H. Weier, M. Frst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, A. Rarity, J. G. Zeilinger, H. Weinfurter, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Phys. Rev. Lett. 98, 010504 (2007).
  14. H. Weier, T. Schmitt-Manderbach, N. Regner, C. Kurtsiefer, H. Weinfurter, "Free space quantum key distribution: Towards a real life application," Fortschr. Phys. 54, 840-845 (2006).
  15. C. Kurtsiefer, P. Zarda, M. Halder, P. M. Gorman, P. R. Tapster, J. G. Rarity, W. H. , "Long distance free space quantum cryptography," Proc. SPIE 4917, 25 (2002).
  16. M. Furst, T. Schmitt-Manderbach, H. Weier, R. Ursin, F. Tiefenbacher, T. Scheidl, C. Barbieri, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. Rarity, A. Zeilinger, H. Weinfurter, "Free-space decoy-state quantum key distribution," Proc. OFC/NFOEC 2008 (2008) pp. 1-3.
  17. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, "Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
  18. W.-Y. Hwang, "Quantum key distribution with high loss: Toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
  19. J. G. Rarity, P. R. Tapster, P. M. Gorman, P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, (2002).
  20. C. Bonato, A. Tomaello, V. D. Deppo, G. Naletto, P. Villoresi, "Feasibility of satellite quantum key distribution," New J. Phys. 11, 045017 (2009).
  21. A. D. Sadovnikov, X. Li, W.-P. Huang, "A two-dimensional DFB laser model accounting for carrier transport effects," IEEE J. Quantum Electron. 31, 1856-1862 (1995).
  22. X. Li, A. D. Sadovnikov, W.-P. Huang, T. Makino, "A physics-based three-dimensional model for distributed feedback laser diodes," IEEE J. Quantum Electron. 34, 1545-1553 (1998).
  23. K. Petermann, Laser Diode Modulation and Noise (Kluwer, 1991).
  24. H.-K. Lo, J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quantum Inf. Comp. 8, 431-458 (2007).
  25. J. A. Bergou, U. Herzog, M. Hillery, Discrimination of Quantum States (Springer, 2004).
  26. S. M. Barnett, S. Croke, "Quantum state discrimination," Adv. Opt. Photon. 1, 238-278 (2009).

2009 (3)

T.-Y. Chen, J. Wang, Y. Liu, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, "200 km Decoy-state quantum key distribution with photon polarization," arXiv:0908.4063v1 (2009).

C. Bonato, A. Tomaello, V. D. Deppo, G. Naletto, P. Villoresi, "Feasibility of satellite quantum key distribution," New J. Phys. 11, 045017 (2009).

S. M. Barnett, S. Croke, "Quantum state discrimination," Adv. Opt. Photon. 1, 238-278 (2009).

2008 (2)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys. 81, 1301 (2008).

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, "Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate," Opt. Exp. 16, 18 790-18 979 (2008).

2007 (3)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, "Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).

T. Schmitt-Manderbach, H. Weier, M. Frst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, A. Rarity, J. G. Zeilinger, H. Weinfurter, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Phys. Rev. Lett. 98, 010504 (2007).

H.-K. Lo, J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quantum Inf. Comp. 8, 431-458 (2007).

2006 (1)

H. Weier, T. Schmitt-Manderbach, N. Regner, C. Kurtsiefer, H. Weinfurter, "Free space quantum key distribution: Towards a real life application," Fortschr. Phys. 54, 840-845 (2006).

2005 (3)

H.-K. Lo, X. Ma, K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).

X. Ma, B. Qi, Y. Zhao, H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).

V. Scarani, S. Iblisdir, N. Gisin, A. Acín, "Quantum cloning," Rev. Mod. Phys. 77, 1225-1256 (2005).

2003 (3)

D. O'Brien, G. Faulkner, K. Jim, E. Zyambo, D. Edwards, M. Whitehead, P. Stavrinou, G. Parry, J. Bellon, M. Sibley, V. Lalithambika, V. Joyner, R. Samsudin, D. Holburn, R. Mears, "High-speed integrated transceivers for optical wireless," IEEE Commun. Mag. 41, 58-62 (2003).

C. Davis, I. Smolyaninov, S. Milner, "Flexible optical wireless links and networks," IEEE Commun. Mag. 41, 51-57 (2003).

W.-Y. Hwang, "Quantum key distribution with high loss: Toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).

2002 (2)

J. G. Rarity, P. R. Tapster, P. M. Gorman, P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, (2002).

C. Kurtsiefer, P. Zarda, M. Halder, P. M. Gorman, P. R. Tapster, J. G. Rarity, W. H. , "Long distance free space quantum cryptography," Proc. SPIE 4917, 25 (2002).

1998 (2)

T. H. Carbonneau, D. R. Wisely, "Opportunities and challenges for optical wireless: The competitive advantage of free space telecommunications links in today's crowded marketplace," Proc. SPIE Wireless Technologies and Systems: Millimeter-Wave and Optical 3232, 119-128 (1998).

X. Li, A. D. Sadovnikov, W.-P. Huang, T. Makino, "A physics-based three-dimensional model for distributed feedback laser diodes," IEEE J. Quantum Electron. 34, 1545-1553 (1998).

1995 (1)

A. D. Sadovnikov, X. Li, W.-P. Huang, "A two-dimensional DFB laser model accounting for carrier transport effects," IEEE J. Quantum Electron. 31, 1856-1862 (1995).

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, "Experimental quantum cryptography," J. Crypt. 5, 3-28 (1992).

Adv. Opt. Photon. (1)

arXiv:0908.4063v1 (1)

T.-Y. Chen, J. Wang, Y. Liu, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, "200 km Decoy-state quantum key distribution with photon polarization," arXiv:0908.4063v1 (2009).

Fortschr. Phys. (1)

H. Weier, T. Schmitt-Manderbach, N. Regner, C. Kurtsiefer, H. Weinfurter, "Free space quantum key distribution: Towards a real life application," Fortschr. Phys. 54, 840-845 (2006).

IEEE Commun. Mag. (2)

D. O'Brien, G. Faulkner, K. Jim, E. Zyambo, D. Edwards, M. Whitehead, P. Stavrinou, G. Parry, J. Bellon, M. Sibley, V. Lalithambika, V. Joyner, R. Samsudin, D. Holburn, R. Mears, "High-speed integrated transceivers for optical wireless," IEEE Commun. Mag. 41, 58-62 (2003).

C. Davis, I. Smolyaninov, S. Milner, "Flexible optical wireless links and networks," IEEE Commun. Mag. 41, 51-57 (2003).

IEEE J. Quantum Electron. (2)

A. D. Sadovnikov, X. Li, W.-P. Huang, "A two-dimensional DFB laser model accounting for carrier transport effects," IEEE J. Quantum Electron. 31, 1856-1862 (1995).

X. Li, A. D. Sadovnikov, W.-P. Huang, T. Makino, "A physics-based three-dimensional model for distributed feedback laser diodes," IEEE J. Quantum Electron. 34, 1545-1553 (1998).

J. Crypt. (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, "Experimental quantum cryptography," J. Crypt. 5, 3-28 (1992).

Nature Photon. (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, "Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).

New J. Phys. (2)

J. G. Rarity, P. R. Tapster, P. M. Gorman, P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, (2002).

C. Bonato, A. Tomaello, V. D. Deppo, G. Naletto, P. Villoresi, "Feasibility of satellite quantum key distribution," New J. Phys. 11, 045017 (2009).

Opt. Exp. (1)

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, "Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate," Opt. Exp. 16, 18 790-18 979 (2008).

Phys. Rev. A (1)

X. Ma, B. Qi, Y. Zhao, H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).

Phys. Rev. Lett. (3)

H.-K. Lo, X. Ma, K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).

T. Schmitt-Manderbach, H. Weier, M. Frst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, A. Rarity, J. G. Zeilinger, H. Weinfurter, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Phys. Rev. Lett. 98, 010504 (2007).

W.-Y. Hwang, "Quantum key distribution with high loss: Toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).

Proc. SPIE (1)

C. Kurtsiefer, P. Zarda, M. Halder, P. M. Gorman, P. R. Tapster, J. G. Rarity, W. H. , "Long distance free space quantum cryptography," Proc. SPIE 4917, 25 (2002).

Proc. SPIE Wireless Technologies and Systems: Millimeter-Wave and Optical (1)

T. H. Carbonneau, D. R. Wisely, "Opportunities and challenges for optical wireless: The competitive advantage of free space telecommunications links in today's crowded marketplace," Proc. SPIE Wireless Technologies and Systems: Millimeter-Wave and Optical 3232, 119-128 (1998).

Quantum Inf. Comp. (1)

H.-K. Lo, J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quantum Inf. Comp. 8, 431-458 (2007).

Rev. Mod. Phys. (2)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys. 81, 1301 (2008).

V. Scarani, S. Iblisdir, N. Gisin, A. Acín, "Quantum cloning," Rev. Mod. Phys. 77, 1225-1256 (2005).

Other (5)

C. H. Bennett, G. Brassard, "Quantum cryptography: Public-key distribution and coin tossing," Proc. IEEE Int. Conf. Comput., Syst. Signal Process. (1984) pp. 175-179.

T. Garlington, J. Babbitt, G. Long, Analysis of Free Space Optics as a Transmission Technology U.S. Army Information Systems Engineering Command (USAISEC), Transmission Systems Directorate (2005) Tech. Rep. AMSEL-IE-TS-05001.

M. Furst, T. Schmitt-Manderbach, H. Weier, R. Ursin, F. Tiefenbacher, T. Scheidl, C. Barbieri, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. Rarity, A. Zeilinger, H. Weinfurter, "Free-space decoy-state quantum key distribution," Proc. OFC/NFOEC 2008 (2008) pp. 1-3.

J. A. Bergou, U. Herzog, M. Hillery, Discrimination of Quantum States (Springer, 2004).

K. Petermann, Laser Diode Modulation and Noise (Kluwer, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.