Abstract

The broadband penetration and continuing growth of Internet traffic among residential and business customers are driving the migration of today's end user's network access from cable to optical fiber and superbroadband wireless systems The integration of optical and wireless systems operating at much higher carrier frequencies in the millimeter-wave (mm-wave) range is considered to be one of the most promising solutions for increasing the existing capacity and mobility, as well as decreasing the costs in next-generation optical access networks. In this paper, several key enabling technologies for very high throughput wireless-over-fiber networks are reviewed, including photonic mm-wave generation based on external modulation or nonlinear effects, spectrum-efficient multicarrier orthogonal frequency-division multiplexing and single-carrier multilevel signal modulation. We also demonstrated some applications in wireless-over-fiber trials using these enabling techniques. The results show that the integrated systems are practical solutions to offer very high throughput wireless to end users in optically enabled wireless access networks.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription