Abstract

We propose and experimentally demonstrate a novel all-optical microwave filter with high frequency selectivity. It is based on a recirculating delay line (RDL) loop in which a semiconductor optical amplifier (SOA) is followed by a tunable narrowband optical filter and a 1$\,\times\,$2 10:90 optical coupler. Converted signal used as a negative tap is generated through wavelength conversion employing the cross-gain modulation (XGM) of the amplified spontaneous emission (ASE) spectrum of the SOA. The converted signal circulating in the RDL loop can realize a high quality factor (Q) response after photo-detection. The 1$\,\times\,$2 10:90 coupler is employed to extract 10% optical power from the loop as output. A frequency response with a high Q factor of 543, a rejection ratio of 40 dB and a shape factor of 15.4 is experimentally demonstrated.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Yao, "Microwave photonics," J. Lightw. Technol. 27, 314-335 (2009).
  2. J. Capmany, B. Ortega, D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave. Technol. 24, 201-229 (2006).
  3. R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).
  4. J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photonics 1, 319-330 (2007).
  5. T. X. H. Huang, X. Yi, R. A. Minasian, "New multiple-tap, general-response, reconfigurable photonic signal processor," Opt. Exp. 17, 5358-5363 (2009).
  6. M. Sagues, R. G. Olcina, A. Loayssa, S. Sales, J. Capmany, "Multi-tap complex-coefficient incoherentmicrowave photonic filters based on optical single-sideband modulation and narrow band optical filtering," Opt. Exp. 16, 295-303 (2008).
  7. Y. T. Dai, J. P. Yao, "Nonuniformly-spaced photonic microwave delay-line filter," Opt. Express 16, 4713-4718 (2008).
  8. J. Mora, A. Ortigosa-Blanch, D. Pastor, J. Capmany, "Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration," Opt. Exp. 14, 7960-7965 (2006).
  9. D. B. Hunter, R. A. Minasian, "Photonic signal processing of microwave signals using an active-fiber bragg-grating-pair structure," IEEE Trans. Microw. Theory Tech. 45, 1463-1466 (1997).
  10. E. H. W. Chan, K. E. Alameh, R. A. Minasian, "Photonic bandpass filters with high skirt selectivity and stopband attenuation," J. Lightw. Technol. 20, 1962-1967 (2002).
  11. E. H. W. Chan, R. A. Minasian, "Reflective amplified recirculating delay line bandpass filter," J. Lightw. Technol. 25, 1441-1446 (2007).
  12. B. Vidal, M. A. Piqueras, J. Marti, "Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering," Opt. Lett. 32, 23-25 (2007).
  13. E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, D. X. Huang, "All-optical microwave notch filter with flat passband based on semiconductor optical amplifier," Opt. Commun. 282, 2297-2300 (2009).
  14. E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, D. X. Huang, "A simple microwave photonic notch filter based on a semiconductor optical amplifier," J. Opt. A Pure Appl. Opt. 11, 085405- (2009).
  15. X. Yi, F. Wei, N. J. Hong, L. Chao, "Tunable microwave filter design using wavelength conversiontechnique and high dispersion time delays," IEEE Photon. Technol. Lett. 13, 857-859 (2001).
  16. D. M. Liu, N. J. Hong, L. Chao, "Wavelength conversion based on cross-gain modulation of ASE spectrum of SOA," IEEE Photon. Technol. Lett. 12, 1222-1224 (2000).
  17. R. Zheng, K. Alameh, Y. T. Lee, Z. L. Wang, "Multitap coherence-free photonic RF filter employing semiconductor optical amplifier," Microw. Opt. Technol. Lett. 49, 1103-1106 (2007).
  18. L. N. Zhou, X. L. Zhang, E. M. Xu, D. X. Huang, "Q value analysis of a first-order IIR microwave photonic filter based on SOA," Acta Phys. Sin. 58, 1036-1041 (2009).

2009 (5)

T. X. H. Huang, X. Yi, R. A. Minasian, "New multiple-tap, general-response, reconfigurable photonic signal processor," Opt. Exp. 17, 5358-5363 (2009).

J. Yao, "Microwave photonics," J. Lightw. Technol. 27, 314-335 (2009).

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, D. X. Huang, "All-optical microwave notch filter with flat passband based on semiconductor optical amplifier," Opt. Commun. 282, 2297-2300 (2009).

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, D. X. Huang, "A simple microwave photonic notch filter based on a semiconductor optical amplifier," J. Opt. A Pure Appl. Opt. 11, 085405- (2009).

L. N. Zhou, X. L. Zhang, E. M. Xu, D. X. Huang, "Q value analysis of a first-order IIR microwave photonic filter based on SOA," Acta Phys. Sin. 58, 1036-1041 (2009).

2008 (2)

M. Sagues, R. G. Olcina, A. Loayssa, S. Sales, J. Capmany, "Multi-tap complex-coefficient incoherentmicrowave photonic filters based on optical single-sideband modulation and narrow band optical filtering," Opt. Exp. 16, 295-303 (2008).

Y. T. Dai, J. P. Yao, "Nonuniformly-spaced photonic microwave delay-line filter," Opt. Express 16, 4713-4718 (2008).

2007 (4)

J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photonics 1, 319-330 (2007).

R. Zheng, K. Alameh, Y. T. Lee, Z. L. Wang, "Multitap coherence-free photonic RF filter employing semiconductor optical amplifier," Microw. Opt. Technol. Lett. 49, 1103-1106 (2007).

E. H. W. Chan, R. A. Minasian, "Reflective amplified recirculating delay line bandpass filter," J. Lightw. Technol. 25, 1441-1446 (2007).

B. Vidal, M. A. Piqueras, J. Marti, "Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering," Opt. Lett. 32, 23-25 (2007).

2006 (3)

J. Capmany, B. Ortega, D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave. Technol. 24, 201-229 (2006).

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).

J. Mora, A. Ortigosa-Blanch, D. Pastor, J. Capmany, "Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration," Opt. Exp. 14, 7960-7965 (2006).

2002 (1)

E. H. W. Chan, K. E. Alameh, R. A. Minasian, "Photonic bandpass filters with high skirt selectivity and stopband attenuation," J. Lightw. Technol. 20, 1962-1967 (2002).

2001 (1)

X. Yi, F. Wei, N. J. Hong, L. Chao, "Tunable microwave filter design using wavelength conversiontechnique and high dispersion time delays," IEEE Photon. Technol. Lett. 13, 857-859 (2001).

2000 (1)

D. M. Liu, N. J. Hong, L. Chao, "Wavelength conversion based on cross-gain modulation of ASE spectrum of SOA," IEEE Photon. Technol. Lett. 12, 1222-1224 (2000).

1997 (1)

D. B. Hunter, R. A. Minasian, "Photonic signal processing of microwave signals using an active-fiber bragg-grating-pair structure," IEEE Trans. Microw. Theory Tech. 45, 1463-1466 (1997).

Acta Phys. Sin. (1)

L. N. Zhou, X. L. Zhang, E. M. Xu, D. X. Huang, "Q value analysis of a first-order IIR microwave photonic filter based on SOA," Acta Phys. Sin. 58, 1036-1041 (2009).

IEEE Photon. Technol. Lett. (2)

X. Yi, F. Wei, N. J. Hong, L. Chao, "Tunable microwave filter design using wavelength conversiontechnique and high dispersion time delays," IEEE Photon. Technol. Lett. 13, 857-859 (2001).

D. M. Liu, N. J. Hong, L. Chao, "Wavelength conversion based on cross-gain modulation of ASE spectrum of SOA," IEEE Photon. Technol. Lett. 12, 1222-1224 (2000).

IEEE Trans. Microw. Theory Tech. (2)

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).

D. B. Hunter, R. A. Minasian, "Photonic signal processing of microwave signals using an active-fiber bragg-grating-pair structure," IEEE Trans. Microw. Theory Tech. 45, 1463-1466 (1997).

J. Lightw. Technol. (3)

E. H. W. Chan, K. E. Alameh, R. A. Minasian, "Photonic bandpass filters with high skirt selectivity and stopband attenuation," J. Lightw. Technol. 20, 1962-1967 (2002).

E. H. W. Chan, R. A. Minasian, "Reflective amplified recirculating delay line bandpass filter," J. Lightw. Technol. 25, 1441-1446 (2007).

J. Yao, "Microwave photonics," J. Lightw. Technol. 27, 314-335 (2009).

J. Lightwave. Technol. (1)

J. Capmany, B. Ortega, D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave. Technol. 24, 201-229 (2006).

J. Opt. A Pure Appl. Opt. (1)

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, D. X. Huang, "A simple microwave photonic notch filter based on a semiconductor optical amplifier," J. Opt. A Pure Appl. Opt. 11, 085405- (2009).

Microw. Opt. Technol. Lett. (1)

R. Zheng, K. Alameh, Y. T. Lee, Z. L. Wang, "Multitap coherence-free photonic RF filter employing semiconductor optical amplifier," Microw. Opt. Technol. Lett. 49, 1103-1106 (2007).

Nature Photonics (1)

J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photonics 1, 319-330 (2007).

Opt. Commun. (1)

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, D. X. Huang, "All-optical microwave notch filter with flat passband based on semiconductor optical amplifier," Opt. Commun. 282, 2297-2300 (2009).

Opt. Exp. (3)

J. Mora, A. Ortigosa-Blanch, D. Pastor, J. Capmany, "Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration," Opt. Exp. 14, 7960-7965 (2006).

T. X. H. Huang, X. Yi, R. A. Minasian, "New multiple-tap, general-response, reconfigurable photonic signal processor," Opt. Exp. 17, 5358-5363 (2009).

M. Sagues, R. G. Olcina, A. Loayssa, S. Sales, J. Capmany, "Multi-tap complex-coefficient incoherentmicrowave photonic filters based on optical single-sideband modulation and narrow band optical filtering," Opt. Exp. 16, 295-303 (2008).

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.