Abstract

Distributed optical fiber Brillouin sensors provide innovative solutions for the monitoring of temperature and strain in large structures. The effective range of these sensors is typically of the order of 20–30 km, which limits their use in certain applications in which the distance to monitor is larger. In this work, we have developed a new technique to significantly extend the measurement distance of a distributed Brillouin Optical Time-Domain Analysis (BOTDA) sensor. Distributed Raman Amplification in the sensing fiber provides the means to enhance the operating range of the setup. Three Raman pumping configurations are theoretically and experimentally investigated: co-propagating, counter-propagating and bidirectional propagation with respect to the Brillouin pump pulse. We show that some of the amplification schemes tested can extend the measurement range and improve the measurement quality over long distances.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Horiguchi, M. Tateda, "Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave," Opt. Lett. 14, 408-410 (1989).
  2. T. Horiguchi, T. Kurashima, M. Tateda, "A technique to measure distributed strain in optical fibers," IEEE Photon. Technol. Lett. 2, 352-354 (1990).
  3. T. Horiguchi, T. Kurashima, M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Tech. Lett. 1, 107-108 (1989).
  4. X. Bao, F. Ravet, L. Zou, "Distributed Brillouin sensor based on Brillouin scattering for structural health monitoring," Fiber Opt. Sens. Syst. 20, 9-11 (2005).
  5. X. Bao, J. Webb, D. A. Jackson, "32-km distributed temperature sensor based on Brillouin loss in an optical fiber," Opt. Lett. 18, 1561-1563 (1993).
  6. M. Niklés, L. Thévenaz, P. A. Robert, "Simple distributed temperature sensor based on Brillouin gain spectrum analysis," Proc. SPIE 10th Int. Conf. Opt. Fibre Sensors (1994) pp. 138-141.
  7. M. Niklés, L. Thévenaz, P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett. 21, 758-760 (1996).
  8. M. Niklés, L. Thévenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).
  9. J. Smith, A. Brown, M. DeMerchant, X. Bao, "Simultaneous distributed strain and temperature measurement," Appl. Opt. 38, 5372-5377 (1999).
  10. H. Naruse, M. Tateda, H. Ohno, A. Shimada, "Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors," Appl. Opt. 41, 7212-7217 (2002).
  11. M. Niklés, "Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications," Third European Workshop on Optical Fiber Sensors, 66190D (2007).
  12. A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, "Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method," J. Lightw. Technol. 17, 1179-1183 (1999).
  13. Y. T. Cho, M. N. Alahbabi, M. J. Gunning, T. P. Newson, "50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification," Opt. Lett. 28, 1651-1653 (2003).
  14. Y. T. Cho, M. N. Alahbabi, M. J. Gunning, T. P. Newson, "Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification," Meas. Sci. Technol. 15, 1548-1552 (2004).
  15. M. N. Alahbabi, Y. T. Cho, T. P. Newson, "100-km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).
  16. M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. OSA B 22, 1321-1324 (2005).
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  18. K. Brown, A. W. Brown, B. Colpitts, "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor," Opt. Fiber Technol. 11, 131-145 (2005).
  19. T. Horiguchi, M. Tateda, "BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory," J. Lightw. Technol. 7, 1170-1176 (1989).
  20. A. Carrasco-Sanz, F. Rodriguez-Barrios, P. Corredera, S. Martin-Lopez, M. Gonzalez-Herraez, M. L. Hernanz, "An integrating sphere radiometer as a solution for high power calibrations in fiber optics," Metrologia 43, 145-150 (2006).

2006 (1)

A. Carrasco-Sanz, F. Rodriguez-Barrios, P. Corredera, S. Martin-Lopez, M. Gonzalez-Herraez, M. L. Hernanz, "An integrating sphere radiometer as a solution for high power calibrations in fiber optics," Metrologia 43, 145-150 (2006).

2005 (3)

X. Bao, F. Ravet, L. Zou, "Distributed Brillouin sensor based on Brillouin scattering for structural health monitoring," Fiber Opt. Sens. Syst. 20, 9-11 (2005).

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. OSA B 22, 1321-1324 (2005).

K. Brown, A. W. Brown, B. Colpitts, "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor," Opt. Fiber Technol. 11, 131-145 (2005).

2004 (2)

Y. T. Cho, M. N. Alahbabi, M. J. Gunning, T. P. Newson, "Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification," Meas. Sci. Technol. 15, 1548-1552 (2004).

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "100-km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).

2003 (1)

2002 (1)

1999 (2)

J. Smith, A. Brown, M. DeMerchant, X. Bao, "Simultaneous distributed strain and temperature measurement," Appl. Opt. 38, 5372-5377 (1999).

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, "Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method," J. Lightw. Technol. 17, 1179-1183 (1999).

1997 (1)

M. Niklés, L. Thévenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).

1996 (1)

1993 (1)

1990 (1)

T. Horiguchi, T. Kurashima, M. Tateda, "A technique to measure distributed strain in optical fibers," IEEE Photon. Technol. Lett. 2, 352-354 (1990).

1989 (3)

T. Horiguchi, T. Kurashima, M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Tech. Lett. 1, 107-108 (1989).

T. Horiguchi, M. Tateda, "BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory," J. Lightw. Technol. 7, 1170-1176 (1989).

T. Horiguchi, M. Tateda, "Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave," Opt. Lett. 14, 408-410 (1989).

Appl. Opt. (2)

Fiber Opt. Sens. Syst. (1)

X. Bao, F. Ravet, L. Zou, "Distributed Brillouin sensor based on Brillouin scattering for structural health monitoring," Fiber Opt. Sens. Syst. 20, 9-11 (2005).

IEEE Photon. Tech. Lett. (1)

T. Horiguchi, T. Kurashima, M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Tech. Lett. 1, 107-108 (1989).

IEEE Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, M. Tateda, "A technique to measure distributed strain in optical fibers," IEEE Photon. Technol. Lett. 2, 352-354 (1990).

J. Lightw. Technol. (3)

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, "Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method," J. Lightw. Technol. 17, 1179-1183 (1999).

M. Niklés, L. Thévenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).

T. Horiguchi, M. Tateda, "BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory," J. Lightw. Technol. 7, 1170-1176 (1989).

J. OSA B (1)

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. OSA B 22, 1321-1324 (2005).

Meas. Sci. Technol. (2)

Y. T. Cho, M. N. Alahbabi, M. J. Gunning, T. P. Newson, "Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification," Meas. Sci. Technol. 15, 1548-1552 (2004).

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "100-km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).

Metrologia (1)

A. Carrasco-Sanz, F. Rodriguez-Barrios, P. Corredera, S. Martin-Lopez, M. Gonzalez-Herraez, M. L. Hernanz, "An integrating sphere radiometer as a solution for high power calibrations in fiber optics," Metrologia 43, 145-150 (2006).

Opt. Fiber Technol. (1)

K. Brown, A. W. Brown, B. Colpitts, "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor," Opt. Fiber Technol. 11, 131-145 (2005).

Opt. Lett. (3)

Opt. Lett. (1)

Other (3)

M. Niklés, "Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications," Third European Workshop on Optical Fiber Sensors, 66190D (2007).

M. Niklés, L. Thévenaz, P. A. Robert, "Simple distributed temperature sensor based on Brillouin gain spectrum analysis," Proc. SPIE 10th Int. Conf. Opt. Fibre Sensors (1994) pp. 138-141.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.