Abstract

We present an analysis and demonstration of the doubling of the chirp rate and total chirp bandwidth of a frequency chirped optical signal by the process of four-wave mixing in a non-linear optical medium. The effects of chromatic dispersion and input power on the maximum achievable output bandwidth are analyzed, and a dispersion compensation technique for phase matching is described. The doubling of an input linear frequency sweep of 100 GHz/1 ms in a highly nonlinear optical fiber is experimentally demonstrated. Further, it is proposed that a cascaded implementation of the four-wave mixing process leads to a geometric increase in the bandwidth of the frequency chirp. With an electronically tuned chirped laser at the input stage, this process can be used to generate extremely wideband swept frequency sources with no moving parts, for applications in high-speed and high-resolution optical imaging and spectroscopy.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. S. Burdic, Radar Signal Analysis (Prentice-Hall, Inc, 1968).
  2. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Exp. 11, 2953-2963 (2003).
  3. R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14, 3225-3237 (2006).
  4. C. Chong, T. Suzuki, A. Morosawa, T. Sakai, "Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source," Opt. Exp. 16, 21 105-21 118 (2008).
  5. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, A. Yariv, "Precise control of broadband frequency chirps using optoelectronic feedback," Opt. Exp. 17, 15 991-15 999 (2009).
  6. F. S. Yang, M. E. Marhic, L. G. Kazovsky, "CW fibre optical parametric amplifier with net gain and wavelength conversion efficiency $>1$," Electron. Lett. 32, 2336-2338 (1996).
  7. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Opt. Lett. 31, 2532-2534 (2006).
  8. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, K. Petermann, "Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching," IEEE J. Sel. Top. Quantum Electron. 3, 1131-1145 (1997).
  9. W. Mathlouthi, H. Rong, M. Paniccia, "Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides," Opt. Exp. 16, 16 735-16 745 (2008).
  10. A. Yariv, Quantum Electronics (Wiley, 1989).
  11. K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, "CW three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49, 5098-5106 (1978).
  12. M. E. Marhic, F. S. Yang, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Lightw. Technol. 17, 210-215 (1999).
  13. J. Kim, O. Boyraz, J. H. Lim, M. N. Islam, "Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: Theory and experiment," J. Lightw. Technol. 19, 247-251 (2001).
  14. O. Ishida, N. Shibata, "Laser frequency synthesis employing fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 1171-1174 (1992).

2009 (1)

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, A. Yariv, "Precise control of broadband frequency chirps using optoelectronic feedback," Opt. Exp. 17, 15 991-15 999 (2009).

2008 (2)

W. Mathlouthi, H. Rong, M. Paniccia, "Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides," Opt. Exp. 16, 16 735-16 745 (2008).

C. Chong, T. Suzuki, A. Morosawa, T. Sakai, "Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source," Opt. Exp. 16, 21 105-21 118 (2008).

2006 (2)

S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Opt. Lett. 31, 2532-2534 (2006).

R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14, 3225-3237 (2006).

2003 (1)

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Exp. 11, 2953-2963 (2003).

2001 (1)

J. Kim, O. Boyraz, J. H. Lim, M. N. Islam, "Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: Theory and experiment," J. Lightw. Technol. 19, 247-251 (2001).

1999 (1)

M. E. Marhic, F. S. Yang, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Lightw. Technol. 17, 210-215 (1999).

1997 (1)

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, K. Petermann, "Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching," IEEE J. Sel. Top. Quantum Electron. 3, 1131-1145 (1997).

1996 (1)

F. S. Yang, M. E. Marhic, L. G. Kazovsky, "CW fibre optical parametric amplifier with net gain and wavelength conversion efficiency $>1$," Electron. Lett. 32, 2336-2338 (1996).

1992 (1)

O. Ishida, N. Shibata, "Laser frequency synthesis employing fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 1171-1174 (1992).

1978 (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, "CW three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49, 5098-5106 (1978).

Electron. Lett. (1)

F. S. Yang, M. E. Marhic, L. G. Kazovsky, "CW fibre optical parametric amplifier with net gain and wavelength conversion efficiency $>1$," Electron. Lett. 32, 2336-2338 (1996).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, K. Petermann, "Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching," IEEE J. Sel. Top. Quantum Electron. 3, 1131-1145 (1997).

IEEE Photon. Technol. Lett. (1)

O. Ishida, N. Shibata, "Laser frequency synthesis employing fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 1171-1174 (1992).

J. Appl. Phys. (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, "CW three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49, 5098-5106 (1978).

J. Lightw. Technol. (2)

M. E. Marhic, F. S. Yang, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Lightw. Technol. 17, 210-215 (1999).

J. Kim, O. Boyraz, J. H. Lim, M. N. Islam, "Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: Theory and experiment," J. Lightw. Technol. 19, 247-251 (2001).

Opt. Exp. (5)

W. Mathlouthi, H. Rong, M. Paniccia, "Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides," Opt. Exp. 16, 16 735-16 745 (2008).

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Exp. 11, 2953-2963 (2003).

R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14, 3225-3237 (2006).

C. Chong, T. Suzuki, A. Morosawa, T. Sakai, "Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source," Opt. Exp. 16, 21 105-21 118 (2008).

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, A. Yariv, "Precise control of broadband frequency chirps using optoelectronic feedback," Opt. Exp. 17, 15 991-15 999 (2009).

Opt. Lett. (1)

Other (2)

A. Yariv, Quantum Electronics (Wiley, 1989).

W. S. Burdic, Radar Signal Analysis (Prentice-Hall, Inc, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.