Abstract

We demonstrate an optical time-domain distributed fiber sensor showing the highest spatial resolution ever reported based on Brillouin dynamic grating in a polarization-maintaining fiber. In our scheme, the acoustic gratings containing the information on the local Brillouin frequency are generated by a long pump pulse in one polarization, and read out by a short probe pulse in the orthogonal polarization at a clearly distinct optical frequency from the pump. In the experiment, distributed temperature measurements over a 20 m fiber are performed with 1.2 cm spatial resolution.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. X. Bao, D. J. Webb, D. A. Jackson, "32-km distributed temperature sensor using brillouin loss in optical fiber," Opt. Lett. 18, 1561-1563 (1993).
  2. M. Nikles, L. Thevenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).
  3. K. Hotate, T. Hasegawa, "Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation," IEICE Trans. Electron. E83-C, 405-412 (2000).
  4. M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B 22, 1321-1324 (2005).
  5. K. Y. Song, Z. He, K. Hotate, "Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis," Opt. Lett. 31, 2526-2528 (2006).
  6. L. Che-Hien, T. Tsuda, K. Kishida, “PPP-BOTDA Method to Achieve cm-Order Spatial Resolution in Brillouin Distributed Measuring Technique,” IEICE Technical Report (2005) OFT 2005-16.
  7. V. P. Kalosha, E. A. Ponomarev, L. Chen, X. Bao, "How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses," Opt. Exp. 14, 2071-2078 (2006).
  8. W. Li, X. Bao, Y. Li, L. Chen, "Differential pulse-width pair BOTDA for high spatial resolution sensing," Opt. Exp. 16, 21616-21625 (2008).
  9. S. Foaleng-Mafang, J. C. Beugnot, L. Thevenaz, "Optimized configuration for high-resolution distributed sensing using Brillouin echoes," Proc. SPIE (2009) pp. 75032C-.
  10. K. Y. Song, W. Zou, Z. He, K. Hotate, "All-optical dynamic grating generation based on Brillouin scattering in polarization maintaining fiber," Opt. Lett. 33, 926-928 (2008).
  11. V. P. Kalosha, W. Li, F. Wang, L. Chen, X. Bao, "Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers," Opt. Lett. 33, 2848-2850 (2008).
  12. W. Zou, Z. He, K. Y. Song, K. Hotate, "Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber," Opt. Lett. 34, 1126-1128 (2009).
  13. K. Y. Song, W. Zou, Z. He, K. Hotate, "Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization maintaining fiber," Opt. Lett. 34, 1381-1383 (2009).
  14. W. Zou, Z. He, K. Hotate, "Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber," Opt. Exp. 17, 1248-1255 (2009).
  15. K. Y. Song, K. Lee, S. B. Lee, "Tunable optical time delays based on Brillouin dynamic grating in optical fibers," Opt. Express 17, 10344-10349 (2009).
  16. Y. Dong, X. Bao, L. Chen, "Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber," Opt. Lett. 34, 2590-2592 (2009).
  17. Y. Dong, L. Chen, X. Bao, "Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating," Opt. Lett. 35, 193-195 (2010).
  18. K. Y. Song, H. J. Yoon, "High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating," Opt. Lett. 35, 52-54 (2010).
  19. N. Primerov, S. Chin, K. Y. Song, L. Thevenaz, "Ultra wide range tunable delay line using dynamic grating reflectors in optical fibers," Proc. OFC 2010 .
  20. E. Lichtman, R. G. Waarts, A. A. Friesem, "Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers," J. Lightw. Technol. 7, 171-174 (1989).
  21. T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).

2010 (2)

2009 (5)

2008 (3)

2006 (2)

K. Y. Song, Z. He, K. Hotate, "Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis," Opt. Lett. 31, 2526-2528 (2006).

V. P. Kalosha, E. A. Ponomarev, L. Chen, X. Bao, "How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses," Opt. Exp. 14, 2071-2078 (2006).

2005 (1)

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B 22, 1321-1324 (2005).

2000 (1)

K. Hotate, T. Hasegawa, "Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation," IEICE Trans. Electron. E83-C, 405-412 (2000).

1997 (2)

M. Nikles, L. Thevenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).

T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).

1993 (1)

1989 (1)

E. Lichtman, R. G. Waarts, A. A. Friesem, "Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers," J. Lightw. Technol. 7, 171-174 (1989).

IEICE Trans. Electron. (1)

K. Hotate, T. Hasegawa, "Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation," IEICE Trans. Electron. E83-C, 405-412 (2000).

J. Lightw. Technol. (3)

M. Nikles, L. Thevenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).

E. Lichtman, R. G. Waarts, A. A. Friesem, "Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers," J. Lightw. Technol. 7, 171-174 (1989).

T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15, 1277-1294 (1997).

J. Opt. Soc. Amer. B (1)

M. N. Alahbabi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B 22, 1321-1324 (2005).

Opt. Exp. (3)

W. Zou, Z. He, K. Hotate, "Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber," Opt. Exp. 17, 1248-1255 (2009).

V. P. Kalosha, E. A. Ponomarev, L. Chen, X. Bao, "How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses," Opt. Exp. 14, 2071-2078 (2006).

W. Li, X. Bao, Y. Li, L. Chen, "Differential pulse-width pair BOTDA for high spatial resolution sensing," Opt. Exp. 16, 21616-21625 (2008).

Opt. Express (1)

Opt. Lett. (9)

Y. Dong, X. Bao, L. Chen, "Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber," Opt. Lett. 34, 2590-2592 (2009).

K. Y. Song, H. J. Yoon, "High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating," Opt. Lett. 35, 52-54 (2010).

Y. Dong, L. Chen, X. Bao, "Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating," Opt. Lett. 35, 193-195 (2010).

X. Bao, D. J. Webb, D. A. Jackson, "32-km distributed temperature sensor using brillouin loss in optical fiber," Opt. Lett. 18, 1561-1563 (1993).

K. Y. Song, Z. He, K. Hotate, "Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis," Opt. Lett. 31, 2526-2528 (2006).

K. Y. Song, W. Zou, Z. He, K. Hotate, "All-optical dynamic grating generation based on Brillouin scattering in polarization maintaining fiber," Opt. Lett. 33, 926-928 (2008).

V. P. Kalosha, W. Li, F. Wang, L. Chen, X. Bao, "Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers," Opt. Lett. 33, 2848-2850 (2008).

W. Zou, Z. He, K. Y. Song, K. Hotate, "Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber," Opt. Lett. 34, 1126-1128 (2009).

K. Y. Song, W. Zou, Z. He, K. Hotate, "Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization maintaining fiber," Opt. Lett. 34, 1381-1383 (2009).

Other (3)

S. Foaleng-Mafang, J. C. Beugnot, L. Thevenaz, "Optimized configuration for high-resolution distributed sensing using Brillouin echoes," Proc. SPIE (2009) pp. 75032C-.

L. Che-Hien, T. Tsuda, K. Kishida, “PPP-BOTDA Method to Achieve cm-Order Spatial Resolution in Brillouin Distributed Measuring Technique,” IEICE Technical Report (2005) OFT 2005-16.

N. Primerov, S. Chin, K. Y. Song, L. Thevenaz, "Ultra wide range tunable delay line using dynamic grating reflectors in optical fibers," Proc. OFC 2010 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.