Abstract

Optical current sensors are demonstrated based on polarization rotated reflection interferometry by incorporating polymeric optical waveguide components. Polarization maintaining 3-dB couplers, TE-pass waveguide polarizers, and thermo-optic phase modulators are designed and fabricated in this work in order to provide essential building blocks for constructing the current sensors. The phase difference between the two circularly polarized waves imposed by the Faraday effect of the optical fiber is detected using the interferometric optical sensor consisting of the polymeric components. To remove the bending induced birefringence, the optical fiber wound around a ceramic frame is annealed at 850$^{\circ}$C for 24 hours. The reflection interferometer comprising the polymer waveguide components operates with good linearity proportional to the monitoring current.

© 2010 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Smith, "Polarization and megnetooptic properties of single-mode optical fiber," Appl. Opt. 17, 52-56 (1978).
  2. A. Papp, H. Harms, "Magnetooptic current transformer. 1: Principles," Appl. Opt. 19, 3729-3734 (1980).
  3. J. D. P. Hrabliuk, "Optical current sensors eliminate CT saturation," Proc. 2002 IEEE PES Winter Meeting pp. 1478-1481.
  4. F. Rahmatian, J. N. Blake, "High-voltage fiber optic current sensors," Proc. 2006 IEEE PES General Meeting (2006).
  5. A. Enokihara, M. Izutsu, T. Sueta, "Optical fiber sensors using the method of polarization-rotated reflection," J. Lightw. Technol. LT-5, 1584-1590 (1987).
  6. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightw. Technol. 20, 267-276 (2002).
  7. K. Bohnert, Oberrohrdorf, Fiber-Optic Current Sensor U. S. Patent 7 075 286 B2 (2006).
  8. M. Hino, S. Hase, K. Ajiki, M. Akagi, "Optical fiber current transformer applications on railway electric power supply systems," QR RTRI 45, 59-63 (2004).
  9. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, M. G. Brunzel, "Fiber-optic current sensor for electrowinning of metals," J. Lightw. Technol. 25, 3602-3609 (2007).
  10. K. Bohnert, P. Gabus, J. Kostovic, H. Brandle, "Optical fiber sensors for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
  11. M.-C. Oh, M.-H. Lee, H.-J. Lee, "TE-pass and TM-pass waveguide polarizers with buried birefringent polymer," Electron. Lett. 35, 471-472 (1999).
  12. M.-C. Oh, M.-H. Lee, H.-J. Lee, "Polymeric waveguide polarization splitter with a buried birefringent polymer," IEEE Photon. Tech. Lett. 11, 1144-1146 (1999).
  13. M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, J.-J. Kim, "Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides," Appl. Phys. Lett. 67, 1821-1823 (1995).
  14. W.-Y. Hwang, M.-C. Oh, H.-M. Lee, H. Park, J.-J. Kim, "Polymeric 2$\,\times\,$2 electro-optic switch consisting of asymmetric Y junctions and Mach–Zehnder interferometer," IEEE Photon. Technol. Lett. 9, 761-763 (1997).
  15. Y. Hida, H. Onose, S. Imamura, "Polymer waveguide thermooptic switch with low electric power consumption at 1.3 $\mu$m," IEEE Photon. Technol. Lett. 5, 782-784 (1993).
  16. D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: Application to optical fiber current sensors," J. Lightw. Technol. 9, 1031-1037 (1991).

2007 (1)

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, M. G. Brunzel, "Fiber-optic current sensor for electrowinning of metals," J. Lightw. Technol. 25, 3602-3609 (2007).

2005 (1)

K. Bohnert, P. Gabus, J. Kostovic, H. Brandle, "Optical fiber sensors for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).

2004 (1)

M. Hino, S. Hase, K. Ajiki, M. Akagi, "Optical fiber current transformer applications on railway electric power supply systems," QR RTRI 45, 59-63 (2004).

2002 (1)

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightw. Technol. 20, 267-276 (2002).

1999 (2)

M.-C. Oh, M.-H. Lee, H.-J. Lee, "TE-pass and TM-pass waveguide polarizers with buried birefringent polymer," Electron. Lett. 35, 471-472 (1999).

M.-C. Oh, M.-H. Lee, H.-J. Lee, "Polymeric waveguide polarization splitter with a buried birefringent polymer," IEEE Photon. Tech. Lett. 11, 1144-1146 (1999).

1997 (1)

W.-Y. Hwang, M.-C. Oh, H.-M. Lee, H. Park, J.-J. Kim, "Polymeric 2$\,\times\,$2 electro-optic switch consisting of asymmetric Y junctions and Mach–Zehnder interferometer," IEEE Photon. Technol. Lett. 9, 761-763 (1997).

1995 (1)

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, J.-J. Kim, "Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides," Appl. Phys. Lett. 67, 1821-1823 (1995).

1993 (1)

Y. Hida, H. Onose, S. Imamura, "Polymer waveguide thermooptic switch with low electric power consumption at 1.3 $\mu$m," IEEE Photon. Technol. Lett. 5, 782-784 (1993).

1991 (1)

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: Application to optical fiber current sensors," J. Lightw. Technol. 9, 1031-1037 (1991).

1987 (1)

A. Enokihara, M. Izutsu, T. Sueta, "Optical fiber sensors using the method of polarization-rotated reflection," J. Lightw. Technol. LT-5, 1584-1590 (1987).

1980 (1)

1978 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M.-C. Oh, S.-Y. Shin, W.-Y. Hwang, J.-J. Kim, "Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides," Appl. Phys. Lett. 67, 1821-1823 (1995).

Electron. Lett. (1)

M.-C. Oh, M.-H. Lee, H.-J. Lee, "TE-pass and TM-pass waveguide polarizers with buried birefringent polymer," Electron. Lett. 35, 471-472 (1999).

IEEE Photon. Tech. Lett. (1)

M.-C. Oh, M.-H. Lee, H.-J. Lee, "Polymeric waveguide polarization splitter with a buried birefringent polymer," IEEE Photon. Tech. Lett. 11, 1144-1146 (1999).

IEEE Photon. Technol. Lett. (2)

W.-Y. Hwang, M.-C. Oh, H.-M. Lee, H. Park, J.-J. Kim, "Polymeric 2$\,\times\,$2 electro-optic switch consisting of asymmetric Y junctions and Mach–Zehnder interferometer," IEEE Photon. Technol. Lett. 9, 761-763 (1997).

Y. Hida, H. Onose, S. Imamura, "Polymer waveguide thermooptic switch with low electric power consumption at 1.3 $\mu$m," IEEE Photon. Technol. Lett. 5, 782-784 (1993).

J. Lightw. Technol. (4)

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, "Annealing of linear birefringence in single-mode fiber coils: Application to optical fiber current sensors," J. Lightw. Technol. 9, 1031-1037 (1991).

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, M. G. Brunzel, "Fiber-optic current sensor for electrowinning of metals," J. Lightw. Technol. 25, 3602-3609 (2007).

A. Enokihara, M. Izutsu, T. Sueta, "Optical fiber sensors using the method of polarization-rotated reflection," J. Lightw. Technol. LT-5, 1584-1590 (1987).

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightw. Technol. 20, 267-276 (2002).

Opt. Lasers Eng. (1)

K. Bohnert, P. Gabus, J. Kostovic, H. Brandle, "Optical fiber sensors for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).

QR RTRI (1)

M. Hino, S. Hase, K. Ajiki, M. Akagi, "Optical fiber current transformer applications on railway electric power supply systems," QR RTRI 45, 59-63 (2004).

Other (3)

K. Bohnert, Oberrohrdorf, Fiber-Optic Current Sensor U. S. Patent 7 075 286 B2 (2006).

J. D. P. Hrabliuk, "Optical current sensors eliminate CT saturation," Proc. 2002 IEEE PES Winter Meeting pp. 1478-1481.

F. Rahmatian, J. N. Blake, "High-voltage fiber optic current sensors," Proc. 2006 IEEE PES General Meeting (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.