Abstract

In combination with the perfectly matched layer (PML)-paradigm, eigenmode expansion techniques have become increasingly important in the analysis and design of cylindrical and planar waveguides for photonics applications. To achieve high accuracy, these techniques rely on the determination of many modes of the modal spectrum of the waveguide under consideration. In this paper, we focus on the efficient computation of TM- and TE-polarized leaky modes for multilayered cylindrical waveguides. First, quasi-static estimates are derived for the propagation constants of these modes. Second, these estimates are used as a starting point in an advanced Newton iteration scheme after they have been subjected to an adaptive linear error correction. To prove the validity of the computation technique, it is applied to technologically important cases: vertical-cavity surface-emitting lasers and a monomode fiber.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription