Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 28,
  • Issue 11,
  • pp. 1624-1630
  • (2010)

Enhanced Sensing Performance in Long Distance Brillouin Optical Time-Domain Analyzer Based on Raman Amplification: Theoretical and Experimental Investigation

Not Accessible

Your library or personal account may give you access

Abstract

The Raman amplification can be employed to obtain the enhanced sensing performance in long-distance Brillouin optical time-domain analyzer (BOTDA) with higher temperature measurement accuracy over the whole sensing fiber. Theoretical investigation on the detected probe waveshape has been performed by using the probe-pump coupled equations combined with Raman amplification. The experimental characterization has been demonstrated to validate the theoretical prediction. The results show that, the 75 Km sensing distance can be achieved by utilizing the bi-directional Raman amplification with measurement accuracy of ${\pm}0.6^{\circ}$C over the whole sensing fiber. The larger Raman power and Brillouin pump power are helpful to improve the sensing signal-noise ratio (SNR). There exists an optimum range for the input probe power and the extinction ratio (ER) of input Brillouin pump pulse. The BOTDA with Raman amplification has considerable potentials to realize long- distance strain and temperature measurement for structural health monitoring and fire alarming, etc.

© 2010 IEEE

PDF Article
More Like This
Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers

Wenqiao Lin, Zhisheng Yang, Xiaobin Hong, Sheng Wang, and Jian Wu
Opt. Express 25(7) 7604-7615 (2017)

Brillouin optical time-domain analysis assisted by second-order Raman amplification

Sonia Martin-Lopez, Mercedes Alcon-Camas, Felix Rodriguez, Pedro Corredera, Juan Diego Ania-Castañon, Luc Thévenaz, and Miguel Gonzalez-Herraez
Opt. Express 18(18) 18769-18778 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved