Abstract

We show that a controlled intentional mode coupling induced via scattering from core inclusions can substantially improve the bandwidth of graded index multimode fibers with centerline defect. We present a comprehensive analysis of the impact of the dielectric constant, size, density, and location of micrometer size inclusions on the bandwidth and attenuation of these fibers. We show that using a proper design, the bandwidth of a 1-km-long fiber can improve from 693-MHz to more than 2.5-GHz with less than 1-dB additional power loss. We also show that in practice, it is possible to obtain the desired level of mode coupling by exposing the photosensitive core of the fiber to a UV laser, therefore creating the micrometer size inclusions after the draw process.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription