Abstract

In this paper, we investigated a chromatic dispersion and Brillouin gain spectrum (BGS) control in highly nonlinear fibers (HNLFs). Downsized HNLFs (DS-HNLFs) with specific mechanical properties are effective to realize novel applications using a strain applied to the fibers. We experimentally demonstrated the zero dispersion wavelength $(\lambda_{0})$ and the BGS tuning of the DS-HNLFs by the strain control technique. In addition, the efficient stimulated Brillouin scattering (SBS) suppression was also demonstrated by the dispersion and BGS managed downsized dispersion-decreasing HNLF. We confirmed that the efficiency of the wavelength conversion was increased drastically by the SBS suppression, and the maximum conversion efficiency of 1.5 dB was realized by a single continuous-wave pump without phase modulation.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. Watanabe, "Optical signal processing using nonlinear fibers," J. Opt. Fiber Commun. Res. 3, 1-24 (2006).
  2. S. Watanabe, S. Takeda, T. Chikama, "Interband wavelength conversion of 320 Gb/s (32$\,\times\,$10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave-mixer," Proc. ECOC 1998 (1998) pp. 85-87.
  3. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," Proc. ECOC 1998 (1998) pp. 475-476.
  4. Y. Takushima, K. Kikuchi, "10-GHz, over 20-channel source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).
  5. T. Inoue, S. Namiki, "Pulse compression techniques using highly nonlinear fibers," Proc. Laser Photon. Rev. (2008) pp. 1-17.
  6. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, T. Yagi, "Low-loss and low-dispersion-slope highly nonlinear fibers," J. Lightw. Technol. 23, 3615-3624 (2005).
  7. M. Takahashi, Y. Mimura, J. Hiroishi, M. Tadakuma, R. Sugizaki, M. Sakano, T. Yagi, "Investigation of a downsized silica highly nonlinear fiber," J. Lightw. Technol. 25, 2103-2107 (2007).
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  9. M. Takahashi, J. Hiroishi, R. Sugizaki, H. Tobioka, T. Yagi, S. Namiki, "Wide temperature operation of a reliable ultra compact highly nonlinear fiber four-wave mixer module," ECOC 2004 StockholmSweden () Paper We4 p019.
  10. M. Takahashi, M. Tadakuma, J. Hiroishi, R. Sugizaki, T. Yagi, "Experiment of zero dispersion tuning by stretching down-sized HNLF," ECOC 2006 CannesFrance () Paper Th1.5.1.
  11. Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, "Failure prediction for long length optical fiber based on proof testing," J. Appl. Phys. 53, 4847-4853 (1982).
  12. S. E. Mechels, J. B. Schlager, D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Nat. Inst. Stand. Technol. 102, 333-347 (1997).
  13. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," J. Lightw. Technol. 22, 631-639 (2004).
  14. J. Hansryd, P. A. Andreson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency," Photon. Technol. Lett. 13, 194-196 (2001).
  15. J. Hansryd, F. D. Westlund, P. A. Andreson, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightw. Technol. 19, 1691-1697 (2001).
  16. N. Yoshizawa, T. Horiguchi, T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fibre cabling," Electron. Lett. 27, 1100-1101 (1991).
  17. K. Shiraki, M. Ohashi, M. Tateda, "Suppression of stimulated Brillouin scattering in a fibre by changing the core radius," Electron. Lett. 31, 668-669 (1995).
  18. T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, M. Onishi, "Al$_2$O$_3$-SiO$_2$ core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB," Proc. ECOC 2006 () pp. 17-18.
  19. M. Takahashi, J. Hiroishi, M. Tadakuma, T. Yagi, "FWM wavelength conversion with over 60 nm of 0 dB conversion bandwidth by SBS-suppressed HNLF," OFC 2009 San DiegoCA () Paper OWU1.

2007 (1)

M. Takahashi, Y. Mimura, J. Hiroishi, M. Tadakuma, R. Sugizaki, M. Sakano, T. Yagi, "Investigation of a downsized silica highly nonlinear fiber," J. Lightw. Technol. 25, 2103-2107 (2007).

2006 (1)

S. Watanabe, "Optical signal processing using nonlinear fibers," J. Opt. Fiber Commun. Res. 3, 1-24 (2006).

2005 (1)

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, T. Yagi, "Low-loss and low-dispersion-slope highly nonlinear fibers," J. Lightw. Technol. 23, 3615-3624 (2005).

2004 (1)

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," J. Lightw. Technol. 22, 631-639 (2004).

2001 (2)

J. Hansryd, P. A. Andreson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency," Photon. Technol. Lett. 13, 194-196 (2001).

J. Hansryd, F. D. Westlund, P. A. Andreson, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightw. Technol. 19, 1691-1697 (2001).

1999 (1)

Y. Takushima, K. Kikuchi, "10-GHz, over 20-channel source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).

1997 (1)

S. E. Mechels, J. B. Schlager, D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Nat. Inst. Stand. Technol. 102, 333-347 (1997).

1995 (1)

K. Shiraki, M. Ohashi, M. Tateda, "Suppression of stimulated Brillouin scattering in a fibre by changing the core radius," Electron. Lett. 31, 668-669 (1995).

1991 (1)

N. Yoshizawa, T. Horiguchi, T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fibre cabling," Electron. Lett. 27, 1100-1101 (1991).

1982 (1)

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, "Failure prediction for long length optical fiber based on proof testing," J. Appl. Phys. 53, 4847-4853 (1982).

Electron. Lett. (2)

N. Yoshizawa, T. Horiguchi, T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fibre cabling," Electron. Lett. 27, 1100-1101 (1991).

K. Shiraki, M. Ohashi, M. Tateda, "Suppression of stimulated Brillouin scattering in a fibre by changing the core radius," Electron. Lett. 31, 668-669 (1995).

IEEE Photon. Technol. Lett. (1)

Y. Takushima, K. Kikuchi, "10-GHz, over 20-channel source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).

J. Appl. Phys. (1)

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, "Failure prediction for long length optical fiber based on proof testing," J. Appl. Phys. 53, 4847-4853 (1982).

J. Lightw. Technol. (4)

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," J. Lightw. Technol. 22, 631-639 (2004).

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, T. Yagi, "Low-loss and low-dispersion-slope highly nonlinear fibers," J. Lightw. Technol. 23, 3615-3624 (2005).

M. Takahashi, Y. Mimura, J. Hiroishi, M. Tadakuma, R. Sugizaki, M. Sakano, T. Yagi, "Investigation of a downsized silica highly nonlinear fiber," J. Lightw. Technol. 25, 2103-2107 (2007).

J. Hansryd, F. D. Westlund, P. A. Andreson, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightw. Technol. 19, 1691-1697 (2001).

J. Opt. Fiber Commun. Res. (1)

S. Watanabe, "Optical signal processing using nonlinear fibers," J. Opt. Fiber Commun. Res. 3, 1-24 (2006).

J. Res. Nat. Inst. Stand. Technol. (1)

S. E. Mechels, J. B. Schlager, D. L. Franzen, "Accurate measurements of the zero-dispersion wavelength in optical fibers," J. Res. Nat. Inst. Stand. Technol. 102, 333-347 (1997).

Photon. Technol. Lett. (1)

J. Hansryd, P. A. Andreson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency," Photon. Technol. Lett. 13, 194-196 (2001).

Other (8)

T. Nakanishi, M. Tanaka, T. Hasegawa, M. Hirano, T. Okuno, M. Onishi, "Al$_2$O$_3$-SiO$_2$ core highly nonlinear dispersion-shifted fiber with Brillouin gain suppression improved by 6.1 dB," Proc. ECOC 2006 () pp. 17-18.

M. Takahashi, J. Hiroishi, M. Tadakuma, T. Yagi, "FWM wavelength conversion with over 60 nm of 0 dB conversion bandwidth by SBS-suppressed HNLF," OFC 2009 San DiegoCA () Paper OWU1.

S. Watanabe, S. Takeda, T. Chikama, "Interband wavelength conversion of 320 Gb/s (32$\,\times\,$10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave-mixer," Proc. ECOC 1998 (1998) pp. 85-87.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," Proc. ECOC 1998 (1998) pp. 475-476.

T. Inoue, S. Namiki, "Pulse compression techniques using highly nonlinear fibers," Proc. Laser Photon. Rev. (2008) pp. 1-17.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

M. Takahashi, J. Hiroishi, R. Sugizaki, H. Tobioka, T. Yagi, S. Namiki, "Wide temperature operation of a reliable ultra compact highly nonlinear fiber four-wave mixer module," ECOC 2004 StockholmSweden () Paper We4 p019.

M. Takahashi, M. Tadakuma, J. Hiroishi, R. Sugizaki, T. Yagi, "Experiment of zero dispersion tuning by stretching down-sized HNLF," ECOC 2006 CannesFrance () Paper Th1.5.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.