Abstract

Silicon-oxynitride waveguides fabricated by plasma-enhanced chemical vapor deposition are very attractive for passive optical components used in optical networks. We use a combination of an high-index contrast and compact core dimensions for the realization of small bending radii. To achieve the high quality requirements with the desired waveguide design the layer deposition and the waveguide fabrication are optimized. Furthermore, we discuss the interface of the high-index optical components to standard single-mode fiber (SSMF) and coupling tolerances, which is more difficult compared to common fiber-mode-matched waveguides. We show results of fabricated Mach-Zehnder interferometer-switches, tunable ring resonators and present a solution to reduce the waveguide birefringence by adjusting the mechanical stress of the cover layer.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components," IEEE Opt. Quantum Electron. 22, 391-416 (1990).
  2. M. Hoffmann, P. Kopka, E. Voges, "Low-loss fiber-matched low-temperature PECVD waveguides with small core dimensions for optical communication systems," IEEE Photon. Technol. Lett. 9, 1238-1240 (1996).
  3. G. Roelkens, P. Dumon, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
  4. M. Fadel, E. Voges, "Fiber-coupled high-index PECVD siliconoxynitride waveguides on silicon," Proc. 207th Meeting Electochem. Soc. (2005).
  5. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, "Silicon oxynitride layers for optical waveguide application," J. Electrochem. Soc. 147, 2237-2241 (2000).
  6. K. Wörhoff, P. V. Lambeck, A. Driessen, "Design tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices," J. Lightw. Technol. 17, 1401-1407 (1999).
  7. W. Lanford, M. Rand, "The hydrogen content of plasma-deposited silicon nitride," J. Appl. Phys. 49, 2473-2477 (1978).
  8. C. Denisse, "Annealing of plasma silicon oxynitride films," J. Appl. Phys. 60, 2543-2547 (1986).
  9. S. M. Hu, "Stress-related problems in silicon technology," J. Appl. Phys. 70, R53-R80 (1991).
  10. C.-K. Kao, Z.-S. Yang, "Etching characteristics of silica-based optical waveguide for planar lightwave circuit," Integr. Ferroelect. 50, 241-249 (2002).
  11. M. Saruwatari, T. Sugie, "Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition," IEEE J. Quantum Opt. 17, 1021-1027 (1981).
  12. M. Fadel, R. Gentemann, "Coupling tolerances of high-index silicon-oxynitride waveguides with small bending radii," AEU—Int. J. Electron. Commun. 61, 168-171 (2007).
  13. E. J. Muphy, T. C. Rice, "Self-alignment technique for fiber attachment to guided wave devices," IEEE J. Quantum Electron. QE-22, 928-932 (1986).
  14. J. Streckert, "A new fundamental mode field-radius definition usable for non gaussian and noncircular field distributions," J. Lightw. Technol. LT-3, 328-331 (1985).
  15. E.-G. Neumann, Single-Mode Fibers (Springer-Verlag, 1988).
  16. T. Windel, U. H. P. Fischer, "Integrated optical mode field adapters at the end of single/multimode fibers," Opt. Photon. 5874, 145-152 (2005).
  17. M. Fadel, E. Voges, "Low-loss SiON ring resonators on silicon for 1.55 $\mu{\rm m}$ wavelength," Proc. Eur. Conf. Integr. Opt. (2007).
  18. M. E. Lines, "Physical origin of the temperature dependence of chromatic dispersion in fused silica," IEEE J. Appl. Phys. 73, 2075-2079 (1993).
  19. K. Takiguchi, S. Kawanishi, "Dispersion slope equalizer for dispersion shifted fiber using a lattice-form programmable optical filter on a planar lightwave circuit," J. Lightw. Technol. 16, 1647-1656 (1998).
  20. B. J. Offrein, F. Horst, G. L. Bona, "Adaptive gain equalizer in high-index-contrast SiON technology," IEEE Photon. Technol. Lett. 12, 504-506 (2000).
  21. S. Sohma, T. Watanabe, "Compact and low power consumption 16 $\times$ 16 optical matrix switch with silica-based PLC technology," Proc. OFC Anaheim (2005) pp. OThV4-1-OThV4-3.
  22. C. K. Madsen, S. Chandrasekhar, "An integrated tunable chromatic dispersion compensator for 40 Gb/s NRZ and CSRZ," Proc. OFC Anaheim (2002) pp. FD9-1-FD9-3.
  23. R. Adar, M. R. Serbin, "Less than 1 dB per meter propagation loss of silica waveguides measured using a ringresonator," J. Lightw. Technol. 12, 1369-1372 (1994).

2007 (1)

M. Fadel, R. Gentemann, "Coupling tolerances of high-index silicon-oxynitride waveguides with small bending radii," AEU—Int. J. Electron. Commun. 61, 168-171 (2007).

2005 (2)

T. Windel, U. H. P. Fischer, "Integrated optical mode field adapters at the end of single/multimode fibers," Opt. Photon. 5874, 145-152 (2005).

G. Roelkens, P. Dumon, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).

2002 (1)

C.-K. Kao, Z.-S. Yang, "Etching characteristics of silica-based optical waveguide for planar lightwave circuit," Integr. Ferroelect. 50, 241-249 (2002).

2000 (2)

B. J. Offrein, F. Horst, G. L. Bona, "Adaptive gain equalizer in high-index-contrast SiON technology," IEEE Photon. Technol. Lett. 12, 504-506 (2000).

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, "Silicon oxynitride layers for optical waveguide application," J. Electrochem. Soc. 147, 2237-2241 (2000).

1999 (1)

K. Wörhoff, P. V. Lambeck, A. Driessen, "Design tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices," J. Lightw. Technol. 17, 1401-1407 (1999).

1998 (1)

K. Takiguchi, S. Kawanishi, "Dispersion slope equalizer for dispersion shifted fiber using a lattice-form programmable optical filter on a planar lightwave circuit," J. Lightw. Technol. 16, 1647-1656 (1998).

1996 (1)

M. Hoffmann, P. Kopka, E. Voges, "Low-loss fiber-matched low-temperature PECVD waveguides with small core dimensions for optical communication systems," IEEE Photon. Technol. Lett. 9, 1238-1240 (1996).

1994 (1)

R. Adar, M. R. Serbin, "Less than 1 dB per meter propagation loss of silica waveguides measured using a ringresonator," J. Lightw. Technol. 12, 1369-1372 (1994).

1993 (1)

M. E. Lines, "Physical origin of the temperature dependence of chromatic dispersion in fused silica," IEEE J. Appl. Phys. 73, 2075-2079 (1993).

1991 (1)

S. M. Hu, "Stress-related problems in silicon technology," J. Appl. Phys. 70, R53-R80 (1991).

1990 (1)

M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components," IEEE Opt. Quantum Electron. 22, 391-416 (1990).

1986 (2)

C. Denisse, "Annealing of plasma silicon oxynitride films," J. Appl. Phys. 60, 2543-2547 (1986).

E. J. Muphy, T. C. Rice, "Self-alignment technique for fiber attachment to guided wave devices," IEEE J. Quantum Electron. QE-22, 928-932 (1986).

1985 (1)

J. Streckert, "A new fundamental mode field-radius definition usable for non gaussian and noncircular field distributions," J. Lightw. Technol. LT-3, 328-331 (1985).

1981 (1)

M. Saruwatari, T. Sugie, "Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition," IEEE J. Quantum Opt. 17, 1021-1027 (1981).

1978 (1)

W. Lanford, M. Rand, "The hydrogen content of plasma-deposited silicon nitride," J. Appl. Phys. 49, 2473-2477 (1978).

AEU—Int. J. Electron. Commun. (1)

M. Fadel, R. Gentemann, "Coupling tolerances of high-index silicon-oxynitride waveguides with small bending radii," AEU—Int. J. Electron. Commun. 61, 168-171 (2007).

IEEE J. Appl. Phys. (1)

M. E. Lines, "Physical origin of the temperature dependence of chromatic dispersion in fused silica," IEEE J. Appl. Phys. 73, 2075-2079 (1993).

IEEE J. Quantum Opt. (1)

M. Saruwatari, T. Sugie, "Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition," IEEE J. Quantum Opt. 17, 1021-1027 (1981).

IEEE J. Quantum Electron. (1)

E. J. Muphy, T. C. Rice, "Self-alignment technique for fiber attachment to guided wave devices," IEEE J. Quantum Electron. QE-22, 928-932 (1986).

IEEE Opt. Quantum Electron. (1)

M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components," IEEE Opt. Quantum Electron. 22, 391-416 (1990).

IEEE Photon. Technol. Lett. (1)

G. Roelkens, P. Dumon, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).

IEEE Photon. Technol. Lett. (2)

M. Hoffmann, P. Kopka, E. Voges, "Low-loss fiber-matched low-temperature PECVD waveguides with small core dimensions for optical communication systems," IEEE Photon. Technol. Lett. 9, 1238-1240 (1996).

B. J. Offrein, F. Horst, G. L. Bona, "Adaptive gain equalizer in high-index-contrast SiON technology," IEEE Photon. Technol. Lett. 12, 504-506 (2000).

Integr. Ferroelect. (1)

C.-K. Kao, Z.-S. Yang, "Etching characteristics of silica-based optical waveguide for planar lightwave circuit," Integr. Ferroelect. 50, 241-249 (2002).

J. Appl. Phys. (3)

W. Lanford, M. Rand, "The hydrogen content of plasma-deposited silicon nitride," J. Appl. Phys. 49, 2473-2477 (1978).

C. Denisse, "Annealing of plasma silicon oxynitride films," J. Appl. Phys. 60, 2543-2547 (1986).

S. M. Hu, "Stress-related problems in silicon technology," J. Appl. Phys. 70, R53-R80 (1991).

J. Electrochem. Soc. (1)

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, "Silicon oxynitride layers for optical waveguide application," J. Electrochem. Soc. 147, 2237-2241 (2000).

J. Lightw. Technol. (1)

R. Adar, M. R. Serbin, "Less than 1 dB per meter propagation loss of silica waveguides measured using a ringresonator," J. Lightw. Technol. 12, 1369-1372 (1994).

J. Lightw. Technol. (3)

K. Takiguchi, S. Kawanishi, "Dispersion slope equalizer for dispersion shifted fiber using a lattice-form programmable optical filter on a planar lightwave circuit," J. Lightw. Technol. 16, 1647-1656 (1998).

K. Wörhoff, P. V. Lambeck, A. Driessen, "Design tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices," J. Lightw. Technol. 17, 1401-1407 (1999).

J. Streckert, "A new fundamental mode field-radius definition usable for non gaussian and noncircular field distributions," J. Lightw. Technol. LT-3, 328-331 (1985).

Opt. Photon. (1)

T. Windel, U. H. P. Fischer, "Integrated optical mode field adapters at the end of single/multimode fibers," Opt. Photon. 5874, 145-152 (2005).

Other (5)

M. Fadel, E. Voges, "Low-loss SiON ring resonators on silicon for 1.55 $\mu{\rm m}$ wavelength," Proc. Eur. Conf. Integr. Opt. (2007).

E.-G. Neumann, Single-Mode Fibers (Springer-Verlag, 1988).

M. Fadel, E. Voges, "Fiber-coupled high-index PECVD siliconoxynitride waveguides on silicon," Proc. 207th Meeting Electochem. Soc. (2005).

S. Sohma, T. Watanabe, "Compact and low power consumption 16 $\times$ 16 optical matrix switch with silica-based PLC technology," Proc. OFC Anaheim (2005) pp. OThV4-1-OThV4-3.

C. K. Madsen, S. Chandrasekhar, "An integrated tunable chromatic dispersion compensator for 40 Gb/s NRZ and CSRZ," Proc. OFC Anaheim (2002) pp. FD9-1-FD9-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.