Abstract

An alumino–germano–silica glass fiber doped with silicon nanoparticles and erbium ions was fabricated using the modified chemical vapor deposition (MCVD) method. Optical properties of the glass fiber were investigated using a Judd–Ofelt analysis. It was found that incorporating silicon nanoparticles with erbium ions did not alter Er-related optical properties of the silica glass fiber. The incorporation of silicon particles in a fiber core caused wide band absorption from 480 nm to 1200 nm. A third order optical nonlinearity of the Si–Er-doped alumino–germano–silica glass fiber was measured to be about 3.8$\,\times {\hbox {10}} ^{-15} ~{\hbox {m}}^{2} /{\hbox {W}}$.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Lee, J. H. Shin, N. Park, "Performance analysis of nanocluster-Si sensitized Er-doped waveguide amplifier using top pumped 470 nm LED," Opt. Exp. 13/24, 9881-9889 (2005).
  2. J. Lee, J. H. Shin, N. Park, "Optical gain at 1.5 $\mu{\hbox {m}}$ in nanocrystal Si-sensitized Er-doped silica waveguide using top pumping at 470 nm LEDs," J. Lightw. Technol. 23, 19-25 (2005).
  3. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, K. Yamamoto, "1.54 $\mu{\hbox {m}}$ photoluminescence of ${\hbox {Er}}^{3+}$ doped into ${\hbox {SiO}}_{2}$ films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to ${\hbox {Er}}^{3+}$," Appl. Phys. Lett. 71, 1198-1200 (1997).
  4. X. Wu, U. Hummerich, F. Namavar, A. M. Cremins-Costa, "Correlation between visible and infrared (1.54 $\mu{\hbox {m}}$) luminescence from Er-implanted porous silicon," Appl. Phys. Lett. 69, 1903-1905 (1996).
  5. L. T. Canham, "Luminescence bands and their proposed origins in highly porous silicon," Phys. Stat. Sol. B 190, 9-14 (1995).
  6. Y. Kanemitsu, T. Ogawa, K. Shiraishi, K. Takeda, "Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell," Phys. Rev. B 48, 4883-4886 (1993).
  7. S. Moon, B. H. Kim, P. R. Watekar, W.-T. Han, "Fabrication and photoluminescence characteristics of ${\hbox {Er}}^{3+}$-doped optical fiber sensitized by silicon," Electron. Lett. 43, 85-86 (2007).
  8. S. Moon, B. H. Kim, W. –T. Han, Proc. OECC (2006) pp. 6D2–4 1–2.
  9. F. Gourbilleau, C. Dufour, R. Madelon, R. Rizk, "Effects of Si nanocluster size and carrier–Er interaction distance on the efficiency of energy transfer," J. Lumin. 126, 581-589 (2007).
  10. J. H. Shin, M.-J. Kim, S.-Y. Seo, C. Lee, "Composition dependence of room temperature luminescence from erbium-doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition," Appl. Phys. Lett. 72/9, 1092-1094 (1998).
  11. P. R. Watekar, S. M. Ju, W.-T. Han, "Er-Ions/Au particles," Colloids. Surf. A: Physicochem. Eng. Aspects 313–314, 492-496 (2008).
  12. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
  13. W. T. Carnall, P. R. Fields, K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions. I. ${\rm Pr}^{3+}$, ${\rm Nd}^{3+}$, ${\rm Pm}^{3+}$, ${\rm Sm}^{3+}$, ${\rm Dy}^{3+}$, ${\rm Ho}^{3+}$, ${\hbox {Er}}^{3+}$, and ${\rm Tm}^{3+}$," J. Chem. Phys. 49, 4424-4442 (1968).
  14. J. Malhotra, D. J. Hagan, B. G. Potter, "Laser induced darkening in semiconductor-doped glasses," J. Opt. Soc. Amer. B 8/7, 1531-1536 (1991).
  15. Y. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, W.-T. Han, "Resonant optical nonlinearity measurement of ${\hbox {Yb}}^{3+}$/${\hbox {Al}}^{3+}$ codoped optical fibers by use of a long period fiber grating pair," Opt. Lett. 27, 580-582 (2002).
  16. A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ. Press, 1998).
  17. P. R. Watekar, M. L. N. Goswami, J. C. Biswas, H. N. Acharya, "A Novel design of the low-non-linearity dispersion compensating optical fiber amplifier and link for DWDM transmission in the 1540–1580 nm band," J. Opt. Commun. 25, 263-266 (2004).
  18. J. Klangsin, O. Marty, J. Munguia, V. Lysenko, A. Vorobey, M. Pitaval, A. Cereyon, A. Pillonnet, B. Champagnon, "Structural and luminescent properties of silicon nanoparticles incorporated into zirconia matrix," Phys. Lett. A 372, 1508-1511 (2008).
  19. H. Murata, Handbook of Optical Fibers and Cables (Marcel Dekker Inc, 1996).
  20. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
  21. J. S. D. Souza, J. P. Leburton, V. N. Freire, E. F. D. Silva Jr., "Intraband absorption in silicon nanocrystals: The combined effect of shape and crystal orientation," Appl. Phys. Lett. 87, 031913/1-031913/3 (2005).
  22. F. Iacona, G. Franzo, C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).
  23. S. Godefroo, M. Hayne, M. Jivanescu, A. Tesmans, M. Zacharias, O. I. Lebedev, G. V. Tendeloo, V. V. Moshchalkov, "Classification and control of the origin of photoluminescence from Si nanoparticles," Nature Nanotechnol. 3, 174-178 (2008).
  24. S. Furukawa, N. Matsumoto, "Effects of polysilane formation on the optical and electrical properties of binary Si:H alloys," Phys. Rev. B 31, 2114-2120 (1985).
  25. S. Furukawa, T. Miyasato, "Quantum size effects on the optical bandgap of microcrystalline Si:H," Phys. Rev. B 38, 5726-5729 (1988).
  26. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
  27. K. Watanabe, M. Fujii, S. Hayashi, "Resonant excitation of ${\hbox {Er}}^{3+}$ by the energy transfer from Si nanocrystals," J. Appl. Phys. 90, 4761-4767 (2001).

2008 (3)

P. R. Watekar, S. M. Ju, W.-T. Han, "Er-Ions/Au particles," Colloids. Surf. A: Physicochem. Eng. Aspects 313–314, 492-496 (2008).

J. Klangsin, O. Marty, J. Munguia, V. Lysenko, A. Vorobey, M. Pitaval, A. Cereyon, A. Pillonnet, B. Champagnon, "Structural and luminescent properties of silicon nanoparticles incorporated into zirconia matrix," Phys. Lett. A 372, 1508-1511 (2008).

S. Godefroo, M. Hayne, M. Jivanescu, A. Tesmans, M. Zacharias, O. I. Lebedev, G. V. Tendeloo, V. V. Moshchalkov, "Classification and control of the origin of photoluminescence from Si nanoparticles," Nature Nanotechnol. 3, 174-178 (2008).

2007 (2)

S. Moon, B. H. Kim, P. R. Watekar, W.-T. Han, "Fabrication and photoluminescence characteristics of ${\hbox {Er}}^{3+}$-doped optical fiber sensitized by silicon," Electron. Lett. 43, 85-86 (2007).

F. Gourbilleau, C. Dufour, R. Madelon, R. Rizk, "Effects of Si nanocluster size and carrier–Er interaction distance on the efficiency of energy transfer," J. Lumin. 126, 581-589 (2007).

2005 (3)

H. Lee, J. H. Shin, N. Park, "Performance analysis of nanocluster-Si sensitized Er-doped waveguide amplifier using top pumped 470 nm LED," Opt. Exp. 13/24, 9881-9889 (2005).

J. Lee, J. H. Shin, N. Park, "Optical gain at 1.5 $\mu{\hbox {m}}$ in nanocrystal Si-sensitized Er-doped silica waveguide using top pumping at 470 nm LEDs," J. Lightw. Technol. 23, 19-25 (2005).

J. S. D. Souza, J. P. Leburton, V. N. Freire, E. F. D. Silva Jr., "Intraband absorption in silicon nanocrystals: The combined effect of shape and crystal orientation," Appl. Phys. Lett. 87, 031913/1-031913/3 (2005).

2004 (1)

P. R. Watekar, M. L. N. Goswami, J. C. Biswas, H. N. Acharya, "A Novel design of the low-non-linearity dispersion compensating optical fiber amplifier and link for DWDM transmission in the 1540–1580 nm band," J. Opt. Commun. 25, 263-266 (2004).

2002 (1)

2001 (1)

K. Watanabe, M. Fujii, S. Hayashi, "Resonant excitation of ${\hbox {Er}}^{3+}$ by the energy transfer from Si nanocrystals," J. Appl. Phys. 90, 4761-4767 (2001).

2000 (2)

F. Iacona, G. Franzo, C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).

1998 (1)

J. H. Shin, M.-J. Kim, S.-Y. Seo, C. Lee, "Composition dependence of room temperature luminescence from erbium-doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition," Appl. Phys. Lett. 72/9, 1092-1094 (1998).

1997 (2)

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, K. Yamamoto, "1.54 $\mu{\hbox {m}}$ photoluminescence of ${\hbox {Er}}^{3+}$ doped into ${\hbox {SiO}}_{2}$ films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to ${\hbox {Er}}^{3+}$," Appl. Phys. Lett. 71, 1198-1200 (1997).

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).

1996 (1)

X. Wu, U. Hummerich, F. Namavar, A. M. Cremins-Costa, "Correlation between visible and infrared (1.54 $\mu{\hbox {m}}$) luminescence from Er-implanted porous silicon," Appl. Phys. Lett. 69, 1903-1905 (1996).

1995 (1)

L. T. Canham, "Luminescence bands and their proposed origins in highly porous silicon," Phys. Stat. Sol. B 190, 9-14 (1995).

1993 (1)

Y. Kanemitsu, T. Ogawa, K. Shiraishi, K. Takeda, "Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell," Phys. Rev. B 48, 4883-4886 (1993).

1991 (1)

J. Malhotra, D. J. Hagan, B. G. Potter, "Laser induced darkening in semiconductor-doped glasses," J. Opt. Soc. Amer. B 8/7, 1531-1536 (1991).

1988 (1)

S. Furukawa, T. Miyasato, "Quantum size effects on the optical bandgap of microcrystalline Si:H," Phys. Rev. B 38, 5726-5729 (1988).

1985 (1)

S. Furukawa, N. Matsumoto, "Effects of polysilane formation on the optical and electrical properties of binary Si:H alloys," Phys. Rev. B 31, 2114-2120 (1985).

1968 (1)

W. T. Carnall, P. R. Fields, K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions. I. ${\rm Pr}^{3+}$, ${\rm Nd}^{3+}$, ${\rm Pm}^{3+}$, ${\rm Sm}^{3+}$, ${\rm Dy}^{3+}$, ${\rm Ho}^{3+}$, ${\hbox {Er}}^{3+}$, and ${\rm Tm}^{3+}$," J. Chem. Phys. 49, 4424-4442 (1968).

1962 (1)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).

Appl. Phys. Lett. (4)

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, K. Yamamoto, "1.54 $\mu{\hbox {m}}$ photoluminescence of ${\hbox {Er}}^{3+}$ doped into ${\hbox {SiO}}_{2}$ films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to ${\hbox {Er}}^{3+}$," Appl. Phys. Lett. 71, 1198-1200 (1997).

X. Wu, U. Hummerich, F. Namavar, A. M. Cremins-Costa, "Correlation between visible and infrared (1.54 $\mu{\hbox {m}}$) luminescence from Er-implanted porous silicon," Appl. Phys. Lett. 69, 1903-1905 (1996).

J. H. Shin, M.-J. Kim, S.-Y. Seo, C. Lee, "Composition dependence of room temperature luminescence from erbium-doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition," Appl. Phys. Lett. 72/9, 1092-1094 (1998).

J. S. D. Souza, J. P. Leburton, V. N. Freire, E. F. D. Silva Jr., "Intraband absorption in silicon nanocrystals: The combined effect of shape and crystal orientation," Appl. Phys. Lett. 87, 031913/1-031913/3 (2005).

Colloids. Surf. A: Physicochem. Eng. Aspects (1)

P. R. Watekar, S. M. Ju, W.-T. Han, "Er-Ions/Au particles," Colloids. Surf. A: Physicochem. Eng. Aspects 313–314, 492-496 (2008).

Electron. Lett. (1)

S. Moon, B. H. Kim, P. R. Watekar, W.-T. Han, "Fabrication and photoluminescence characteristics of ${\hbox {Er}}^{3+}$-doped optical fiber sensitized by silicon," Electron. Lett. 43, 85-86 (2007).

J. Appl. Phys. (1)

F. Iacona, G. Franzo, C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).

J. Chem. Phys. (1)

W. T. Carnall, P. R. Fields, K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions. I. ${\rm Pr}^{3+}$, ${\rm Nd}^{3+}$, ${\rm Pm}^{3+}$, ${\rm Sm}^{3+}$, ${\rm Dy}^{3+}$, ${\rm Ho}^{3+}$, ${\hbox {Er}}^{3+}$, and ${\rm Tm}^{3+}$," J. Chem. Phys. 49, 4424-4442 (1968).

J. Appl. Phys. (1)

K. Watanabe, M. Fujii, S. Hayashi, "Resonant excitation of ${\hbox {Er}}^{3+}$ by the energy transfer from Si nanocrystals," J. Appl. Phys. 90, 4761-4767 (2001).

J. Lightw. Technol. (1)

J. Lee, J. H. Shin, N. Park, "Optical gain at 1.5 $\mu{\hbox {m}}$ in nanocrystal Si-sensitized Er-doped silica waveguide using top pumping at 470 nm LEDs," J. Lightw. Technol. 23, 19-25 (2005).

J. Lumin. (1)

F. Gourbilleau, C. Dufour, R. Madelon, R. Rizk, "Effects of Si nanocluster size and carrier–Er interaction distance on the efficiency of energy transfer," J. Lumin. 126, 581-589 (2007).

J. Opt. Commun. (1)

P. R. Watekar, M. L. N. Goswami, J. C. Biswas, H. N. Acharya, "A Novel design of the low-non-linearity dispersion compensating optical fiber amplifier and link for DWDM transmission in the 1540–1580 nm band," J. Opt. Commun. 25, 263-266 (2004).

J. Opt. Soc. Amer. B (1)

J. Malhotra, D. J. Hagan, B. G. Potter, "Laser induced darkening in semiconductor-doped glasses," J. Opt. Soc. Amer. B 8/7, 1531-1536 (1991).

Nature Nanotechnol. (1)

S. Godefroo, M. Hayne, M. Jivanescu, A. Tesmans, M. Zacharias, O. I. Lebedev, G. V. Tendeloo, V. V. Moshchalkov, "Classification and control of the origin of photoluminescence from Si nanoparticles," Nature Nanotechnol. 3, 174-178 (2008).

Nature (1)

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).

Opt. Exp. (1)

H. Lee, J. H. Shin, N. Park, "Performance analysis of nanocluster-Si sensitized Er-doped waveguide amplifier using top pumped 470 nm LED," Opt. Exp. 13/24, 9881-9889 (2005).

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).

Opt. Lett. (1)

Phys. Rev. B (1)

S. Furukawa, T. Miyasato, "Quantum size effects on the optical bandgap of microcrystalline Si:H," Phys. Rev. B 38, 5726-5729 (1988).

Phys. Stat. Sol. B (1)

L. T. Canham, "Luminescence bands and their proposed origins in highly porous silicon," Phys. Stat. Sol. B 190, 9-14 (1995).

Phys. Lett. A (1)

J. Klangsin, O. Marty, J. Munguia, V. Lysenko, A. Vorobey, M. Pitaval, A. Cereyon, A. Pillonnet, B. Champagnon, "Structural and luminescent properties of silicon nanoparticles incorporated into zirconia matrix," Phys. Lett. A 372, 1508-1511 (2008).

Phys. Rev. (1)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).

Phys. Rev. B (2)

Y. Kanemitsu, T. Ogawa, K. Shiraishi, K. Takeda, "Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell," Phys. Rev. B 48, 4883-4886 (1993).

S. Furukawa, N. Matsumoto, "Effects of polysilane formation on the optical and electrical properties of binary Si:H alloys," Phys. Rev. B 31, 2114-2120 (1985).

Other (3)

S. Moon, B. H. Kim, W. –T. Han, Proc. OECC (2006) pp. 6D2–4 1–2.

H. Murata, Handbook of Optical Fibers and Cables (Marcel Dekker Inc, 1996).

A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ. Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.