Abstract

We propose an all-optical phase-interleaving technology based on dual-pump four-wave mixing (FWM) in highly nonlinear fiber (HNLF). The proposed all-optical phase-interleaving technology is applied in an all-optical phase-multiplexing scheme to successfully phase-multiplex 2x or 3$\,\times\,$10-Gb/s DPSK-WDM signals to a 20- or 30-Gb/s DPSK in non-return-to-zero (NRZ) formats. The proposed all-optical phase multiplexing scheme is demonstrated using dual-pump FWM in highly nonlinear silica and bismuth fibers. In contrast with optical time-division multiplexing technology, the proposed all-optical phase-multiplexing technology does not require pulse-carving, thus offering a high spectral-efficiency. Differential precoder for each input tributary is operated independently, and no additional encoder or postcoder is required to recover the original data after demodulation on the receiver side.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription