Abstract

We analytically and experimentally demonstrate a linearly field-modulated, direct-detected virtual single-sideband orthogonal frequency-division multiplexing (VSSB-OFDM) system that employs a tunable frequency gap and an iterative detection technique. The VSSB-OFDM that uses no frequency gap, which is referred to as the gapless VSSB-OFDM, is proposed as a spectrally efficient format. Compared with the intensity-modulated SSB-OFDM, the gapless VSSB-OFDM saves half the electrical bandwidth (BW), and exhibits better receiving sensitivity and more robust tolerance against fiber chromatic dispersion (CD). Furthermore, by incorporating a tunable frequency gap between the optical carrier and the OFDM data sideband, the calculating burden of the iterative detection is greatly alleviated and the system performance can be flexibly improved within moderate iterations. The width of the optimum frequency gap is found to be ${\sim} {\hbox {0.35}}$ sideband BW, which is reached by trading the levels of signal–signal beat interference and the residual image beat interference. Such a gapped VSSB-OFDM system requires fewer iterations to extract the desired data from the interfered signal and exhibits greater robustness against the carrier-to-signal-power ratio (CSPR) variation, compared with the gapless VSSB-OFDM. In this paper, the analytical model of the proposed gapped VSSB-OFDM system will be addressed. In addition, we also successfully conduct a gapped VSSB-OFDM signal transmission over 1600 km of uncompensated standard single-mode fiber (SSMF) with only ${\sim} {\hbox {3}}$ dB optical SNR (OSNR) penalty, and obtain a significant OSNR sensitivity improvement of ${\sim} {\hbox {8}}$ dB, compared with the gapless VSSB-OFDM, after such a 1600-km fiber link.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. B. J. C. Schmidt, A. J. Lowery, J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightw. Technol. 26, 196-203 (2008).
  2. W. Shieh, H. Bao, Y. Tang, "Coherent optical OFDM: Theory and design," Opt. Exp. 16, 841-859 (2008).
  3. S. L. Jansen, I. Morita, H. Tanaka, "10$\,\times\,$121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1 000 km of SSMF," OFC 2008 San DiegoCA Paper PDP2.
  4. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, S. Chi, "Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems," J. Lightw. Technol. 27, 1332-1339 (2009).
  5. C. Xie, "PMD insensitive direct-detection optical OFDM systems using self-polarization diversity," Proc. OFC 2008 pp. 1-3.
  6. Z. Zan, M. Premaratne, A. J. Lowery, "Laser RIN and linewidth requirements for direct detection optical OFDM," CLEO 2008 San JoseCA Paper CWN2.
  7. W.-R. Peng, K.-M. Feng, A. E. Willner, "Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity," Proc. LEOS 2008 pp. 71-72.
  8. W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, L. C. Christen, J. Y. Yang, K. M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion," Proc. OFC 2008 pp. 1-3.
  9. D. F. Hewitt, "Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation," Proc. OFC 2007 pp. 1-3.
  10. W.-R. Peng, S. Chi, "Improving the transmission performance for an externally modulated baseband single sideband OFDM signal using nonlinear post-compensation and differential encoding schemes," ECOC 2007 BerlinGermany Paper P078.
  11. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
  12. W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, K. M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques," Proc. OFC 2008 pp. 1-3.
  13. V. Cizek, "Discrete Hilbert transform," IEEE Trans. Audio Electroacoust. AU-8, 340-343 (1970).
  14. R. van Nee, R. Presad, OFDM for Wireless Multimedia Communications (Artech House, 2000).
  15. J. G. Proakis, D. K. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications. (Prentice Hall, 2006).
  16. F. Buchali, F. Supper, "Optimization of an optical OFDM system by peak to average signal ratio reduction," ECOC 2007 BerlinGermany Paper Tu. 5.2.4.
  17. Q. Yang, N. Kaneda, X. Liu, S. Chandrasekhar, W. Shieh, Y. K. Chen, "Real-time coherent optical OFDM receiver at 2.5-Gbps for receiving a 54 Gbps multi-band signal," Proc. OFC 2009 pp. 1-3.
  18. W.-R. Peng, B. Zhang, X. Wu, K.-M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of 1600 km SSMF transmission of a generalized direct detection optical virtual SSB-OFDM system," Proc. ECOC 2008 pp. 1-2.
  19. A. J. Lowery, L. Du, J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," Proc. OFC 2006 pp. 1-3.
  20. R. A. Shafik, M. S. Rahman, A. R. Islam, "On the extended relationships among EVM, BER, and SNR as performance metrics," Proc. Int. Conf. Electr. Comput. Eng. (ICECE 2006) (2006) pp. 408-411.
  21. B. J. C. Schmidt, A. J. Lowery, L. B. Du, "Low sampling rate transmitter for direct-detection optical OFDM system," Proc. OFC 2009 pp. 1-2.
  22. A. J. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Opt. Exp. 16, 860-865 (2008).
  23. W. R. Peng, K.-M. Feng, A. E. Willner, S. Chi, "Estimation of the bit error rate for direct-detected OFDM signals with optically pre-amplified receivers," J. Lightw. Technol. 27, 1340-1346 (2009).
  24. A. J. Lowery, L. B. Du, J. Armstrong, "Performance of optical OFDM in ultra long haul WDM lightwave systems," J. Lightw. Technol. 25, 131-138 (2007).

2009 (2)

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, S. Chi, "Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems," J. Lightw. Technol. 27, 1332-1339 (2009).

W. R. Peng, K.-M. Feng, A. E. Willner, S. Chi, "Estimation of the bit error rate for direct-detected OFDM signals with optically pre-amplified receivers," J. Lightw. Technol. 27, 1340-1346 (2009).

2008 (4)

A. J. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Opt. Exp. 16, 860-865 (2008).

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).

B. J. C. Schmidt, A. J. Lowery, J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightw. Technol. 26, 196-203 (2008).

W. Shieh, H. Bao, Y. Tang, "Coherent optical OFDM: Theory and design," Opt. Exp. 16, 841-859 (2008).

2007 (1)

A. J. Lowery, L. B. Du, J. Armstrong, "Performance of optical OFDM in ultra long haul WDM lightwave systems," J. Lightw. Technol. 25, 131-138 (2007).

1970 (1)

V. Cizek, "Discrete Hilbert transform," IEEE Trans. Audio Electroacoust. AU-8, 340-343 (1970).

IEEE Photon. Technol. Lett. (1)

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).

IEEE Trans. Audio Electroacoust. (1)

V. Cizek, "Discrete Hilbert transform," IEEE Trans. Audio Electroacoust. AU-8, 340-343 (1970).

J. Lightw. Technol. (4)

B. J. C. Schmidt, A. J. Lowery, J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightw. Technol. 26, 196-203 (2008).

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, S. Chi, "Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems," J. Lightw. Technol. 27, 1332-1339 (2009).

W. R. Peng, K.-M. Feng, A. E. Willner, S. Chi, "Estimation of the bit error rate for direct-detected OFDM signals with optically pre-amplified receivers," J. Lightw. Technol. 27, 1340-1346 (2009).

A. J. Lowery, L. B. Du, J. Armstrong, "Performance of optical OFDM in ultra long haul WDM lightwave systems," J. Lightw. Technol. 25, 131-138 (2007).

Opt. Exp. (2)

A. J. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Opt. Exp. 16, 860-865 (2008).

W. Shieh, H. Bao, Y. Tang, "Coherent optical OFDM: Theory and design," Opt. Exp. 16, 841-859 (2008).

Other (16)

S. L. Jansen, I. Morita, H. Tanaka, "10$\,\times\,$121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1 000 km of SSMF," OFC 2008 San DiegoCA Paper PDP2.

W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, K. M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques," Proc. OFC 2008 pp. 1-3.

C. Xie, "PMD insensitive direct-detection optical OFDM systems using self-polarization diversity," Proc. OFC 2008 pp. 1-3.

Z. Zan, M. Premaratne, A. J. Lowery, "Laser RIN and linewidth requirements for direct detection optical OFDM," CLEO 2008 San JoseCA Paper CWN2.

W.-R. Peng, K.-M. Feng, A. E. Willner, "Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity," Proc. LEOS 2008 pp. 71-72.

W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, L. C. Christen, J. Y. Yang, K. M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion," Proc. OFC 2008 pp. 1-3.

D. F. Hewitt, "Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation," Proc. OFC 2007 pp. 1-3.

W.-R. Peng, S. Chi, "Improving the transmission performance for an externally modulated baseband single sideband OFDM signal using nonlinear post-compensation and differential encoding schemes," ECOC 2007 BerlinGermany Paper P078.

R. van Nee, R. Presad, OFDM for Wireless Multimedia Communications (Artech House, 2000).

J. G. Proakis, D. K. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications. (Prentice Hall, 2006).

F. Buchali, F. Supper, "Optimization of an optical OFDM system by peak to average signal ratio reduction," ECOC 2007 BerlinGermany Paper Tu. 5.2.4.

Q. Yang, N. Kaneda, X. Liu, S. Chandrasekhar, W. Shieh, Y. K. Chen, "Real-time coherent optical OFDM receiver at 2.5-Gbps for receiving a 54 Gbps multi-band signal," Proc. OFC 2009 pp. 1-3.

W.-R. Peng, B. Zhang, X. Wu, K.-M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of 1600 km SSMF transmission of a generalized direct detection optical virtual SSB-OFDM system," Proc. ECOC 2008 pp. 1-2.

A. J. Lowery, L. Du, J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," Proc. OFC 2006 pp. 1-3.

R. A. Shafik, M. S. Rahman, A. R. Islam, "On the extended relationships among EVM, BER, and SNR as performance metrics," Proc. Int. Conf. Electr. Comput. Eng. (ICECE 2006) (2006) pp. 408-411.

B. J. C. Schmidt, A. J. Lowery, L. B. Du, "Low sampling rate transmitter for direct-detection optical OFDM system," Proc. OFC 2009 pp. 1-2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.