Abstract

This paper presents the latest improvements in design and fabrication of ridged LiNbO$_{3}$ optical phase modulators operating in the W-band for millimeter-wave imaging applications at 94GHz. It describes the design conditions for effective index matching between optical carrier at 1550 nm and millimeter-wave signal, as well as impedance matching and propagation losses reduction. The impacts of different geometric parameters on the device performance are discussed. In addition, the paper reports the diverse material processing techniques for device fabrication. Characterization of the fabricated devices shows conversion efficiency as high as 1.045 W$^{- 1}$ at 94GHz with a 7 V dc half-wave voltage and a 3.7dB optical insertion loss.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. K. Noguchi, "Ultra-high-speed LiNbO$_{3}$modulators," J. Opt. Fiber Commun. Res. 4, (2007).
  2. K. Noguchi, O. Mitomi, H. Miyazawa, "Millimeter-wave Ti: LiNbO$_{3}$ optical modulators," J. Lightw. Technol. 16, 615-619 (1998).
  3. C. A. Schuetz, J. Murakowski, G. J. Schneider, D. W. Prather, "Radiometric millimeter-wave detection via optical upconversion and carrier suppression," IEEE Trans. Microw. Theory Tech. 53, 1732-1738 (2005).
  4. C. A. Schuetz, C. Huang, R. Shireen, T. H. Hwang, G. J. Schneider, J. Murakowski, D. W. Prather, Terahertz Gigahertz Electron. Photon. V, Proc. SPIE (International Society for Optical Engineering, 2006) pp. 612007-1-612007-10.
  5. C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, D. W. Prather, "LiNbO3 optical modulator for MMW sensing and imaging," Proc. SPIE. DSS (2007).
  6. C. A. Schuetz, D. W. Prather, Passive Millimeter-Wave Terahertz Imaging Technol (, 2004) pp. 166-174.
  7. J. P. Samluk, C. A. Schuetz, E. L. Stein Jr., A. Robbins, D. G. Mackrides, R. D. Martin, C. Chen, D. W. Prather, "Far field millimeter-wave imaging via optical upconversion," Proc. SPIE (2008) pp. 694804-1-694804-10.
  8. M. M. Howerton, R. P. Moeller, A. S. Greenblatt, R. Krahenbuhl, "Fully packaged, broadband LiNbO3 modulator with low drive voltage," IEEE Photon. Technol. Lett. 12, 792-794 (2000).
  9. S. Haxha, B. M. Azizur Rahman, K. T. V. Grattan, "Bandwidth estimation for ultra-high-speed lithium niobate modulators," Appl. Opt. 42, 2674-2682 (2003).
  10. J. P. Samluk, C. A. Schuetz, R. D. Martin, E. L. Stein Jr., D. G. Mackrides, C. Chen, P. Yao, R. Shireen, J. Macario, D. W. Prather, "94 GHz millimeter-wave imaging system implementing optical upconversion," Proc. SPIE (2008) pp. 711729.
  11. K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, "A broadband Ti : LiNbO3 optical modulator with a ridge structure," J. Lightw. Technol. 13, 1164-1168 (1995).
  12. K. Noguchi, H. Miyazawa, O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti : LiNbO optical modulator," Electron. Lett. 34, 661-663 (1998).
  13. O. Mitomi, K. Noguchi, H. Miyazawa, "Design of ultra-broad-B and LiNbO3 optical modulators with ridge structure," IEEE Trans. Microw. Theory Tech. 43, 2203-2207 (1995).
  14. M. Koshiba, Y. Tsuji, M. Nishio, "Finite-element modeling of broadband traveling-wave optical modulators," IEEE Trans. Microw. Theory Tech. 47, 1627-1633 (1999).
  15. R. V. Schmidt, I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974).
  16. J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, "Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS," J. Micromech. Microeng. 11, 20-26 (2001).
  17. P. Yao, R. Shireen, J. Macario, C. A. Schuetz, S. Shi, D. W. Prather, SPIE-The International Society for Optical Engineering"Design, fabrication and characterization of LiNbO$_{3}$optical modulator for high-sensitivity MmW imaging system," Passive Millimeter-Wave Imag. Technol. XI 6948, 69480-8--694808-9 (2008).
  18. K. Goverdhanam, "Effect of substrate modes in 40 Gbit travelling wave LiNb03 modulators," Proc. IEEE MTT-S Digest (2002) pp. 1285-1288.
  19. M. M. Radmanesh, Radio Frequency and Microwave Electronics Illustrated (Prentice Hall PTR Press, 2001).

2008 (1)

P. Yao, R. Shireen, J. Macario, C. A. Schuetz, S. Shi, D. W. Prather, SPIE-The International Society for Optical Engineering"Design, fabrication and characterization of LiNbO$_{3}$optical modulator for high-sensitivity MmW imaging system," Passive Millimeter-Wave Imag. Technol. XI 6948, 69480-8--694808-9 (2008).

2007 (1)

K. Noguchi, "Ultra-high-speed LiNbO$_{3}$modulators," J. Opt. Fiber Commun. Res. 4, (2007).

2005 (1)

C. A. Schuetz, J. Murakowski, G. J. Schneider, D. W. Prather, "Radiometric millimeter-wave detection via optical upconversion and carrier suppression," IEEE Trans. Microw. Theory Tech. 53, 1732-1738 (2005).

2003 (1)

2001 (1)

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, "Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS," J. Micromech. Microeng. 11, 20-26 (2001).

2000 (1)

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, R. Krahenbuhl, "Fully packaged, broadband LiNbO3 modulator with low drive voltage," IEEE Photon. Technol. Lett. 12, 792-794 (2000).

1999 (1)

M. Koshiba, Y. Tsuji, M. Nishio, "Finite-element modeling of broadband traveling-wave optical modulators," IEEE Trans. Microw. Theory Tech. 47, 1627-1633 (1999).

1998 (2)

K. Noguchi, H. Miyazawa, O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti : LiNbO optical modulator," Electron. Lett. 34, 661-663 (1998).

K. Noguchi, O. Mitomi, H. Miyazawa, "Millimeter-wave Ti: LiNbO$_{3}$ optical modulators," J. Lightw. Technol. 16, 615-619 (1998).

1995 (2)

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, "A broadband Ti : LiNbO3 optical modulator with a ridge structure," J. Lightw. Technol. 13, 1164-1168 (1995).

O. Mitomi, K. Noguchi, H. Miyazawa, "Design of ultra-broad-B and LiNbO3 optical modulators with ridge structure," IEEE Trans. Microw. Theory Tech. 43, 2203-2207 (1995).

1974 (1)

R. V. Schmidt, I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. V. Schmidt, I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974).

Electron. Lett. (1)

K. Noguchi, H. Miyazawa, O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti : LiNbO optical modulator," Electron. Lett. 34, 661-663 (1998).

IEEE Photon. Technol. Lett. (1)

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, R. Krahenbuhl, "Fully packaged, broadband LiNbO3 modulator with low drive voltage," IEEE Photon. Technol. Lett. 12, 792-794 (2000).

IEEE Trans. Microw. Theory Tech. (3)

O. Mitomi, K. Noguchi, H. Miyazawa, "Design of ultra-broad-B and LiNbO3 optical modulators with ridge structure," IEEE Trans. Microw. Theory Tech. 43, 2203-2207 (1995).

M. Koshiba, Y. Tsuji, M. Nishio, "Finite-element modeling of broadband traveling-wave optical modulators," IEEE Trans. Microw. Theory Tech. 47, 1627-1633 (1999).

C. A. Schuetz, J. Murakowski, G. J. Schneider, D. W. Prather, "Radiometric millimeter-wave detection via optical upconversion and carrier suppression," IEEE Trans. Microw. Theory Tech. 53, 1732-1738 (2005).

J. Lightw. Technol. (2)

K. Noguchi, O. Mitomi, H. Miyazawa, "Millimeter-wave Ti: LiNbO$_{3}$ optical modulators," J. Lightw. Technol. 16, 615-619 (1998).

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, "A broadband Ti : LiNbO3 optical modulator with a ridge structure," J. Lightw. Technol. 13, 1164-1168 (1995).

J. Micromech. Microeng. (1)

J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, "Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS," J. Micromech. Microeng. 11, 20-26 (2001).

J. Opt. Fiber Commun. Res. (1)

K. Noguchi, "Ultra-high-speed LiNbO$_{3}$modulators," J. Opt. Fiber Commun. Res. 4, (2007).

Passive Millimeter-Wave Imag. Technol. XI (1)

P. Yao, R. Shireen, J. Macario, C. A. Schuetz, S. Shi, D. W. Prather, SPIE-The International Society for Optical Engineering"Design, fabrication and characterization of LiNbO$_{3}$optical modulator for high-sensitivity MmW imaging system," Passive Millimeter-Wave Imag. Technol. XI 6948, 69480-8--694808-9 (2008).

Other (7)

K. Goverdhanam, "Effect of substrate modes in 40 Gbit travelling wave LiNb03 modulators," Proc. IEEE MTT-S Digest (2002) pp. 1285-1288.

M. M. Radmanesh, Radio Frequency and Microwave Electronics Illustrated (Prentice Hall PTR Press, 2001).

J. P. Samluk, C. A. Schuetz, R. D. Martin, E. L. Stein Jr., D. G. Mackrides, C. Chen, P. Yao, R. Shireen, J. Macario, D. W. Prather, "94 GHz millimeter-wave imaging system implementing optical upconversion," Proc. SPIE (2008) pp. 711729.

C. A. Schuetz, C. Huang, R. Shireen, T. H. Hwang, G. J. Schneider, J. Murakowski, D. W. Prather, Terahertz Gigahertz Electron. Photon. V, Proc. SPIE (International Society for Optical Engineering, 2006) pp. 612007-1-612007-10.

C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, D. W. Prather, "LiNbO3 optical modulator for MMW sensing and imaging," Proc. SPIE. DSS (2007).

C. A. Schuetz, D. W. Prather, Passive Millimeter-Wave Terahertz Imaging Technol (, 2004) pp. 166-174.

J. P. Samluk, C. A. Schuetz, E. L. Stein Jr., A. Robbins, D. G. Mackrides, R. D. Martin, C. Chen, D. W. Prather, "Far field millimeter-wave imaging via optical upconversion," Proc. SPIE (2008) pp. 694804-1-694804-10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.