Abstract

We have proposed a label recognition integrated-optic circuits for photonic label switching using self-routing of the label pulses. Binary phase shift keying (BPSK) format is considered as the label. An identifying bit is placed ahead of the address bits in the label. The label recognition system consists of a tree-structure connection of asymmetric X-junction couplers. The system uses self-routing propagation of the identification bit controlled by the address bits. Asymmetric X-junction couplers have a feature of small dependence on wavelength. However, the wavelength dependence of optical circuits consisting of multiple asymmetric X-junction couplers depends strongly on its architecture. In this paper, we propose a wavelength insensitive architecture of the recognition circuit. The wavelength independence in the improved circuit is confirmed using finite-difference beam propagation method (FD-BPM). We numerically demonstrate that our proposed system can recognize all the binary-code labels in wavelength range of 1500–1600 nm with crosstalk less than ${-}25$ dB and ${-}15$ dB for label length three and four, respectively.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription