Abstract

In this paper, we analyze the optical power transmission in structures that include a low-index intermediate layer and sources with a wide angular distribution. Special attention is paid to the angular average of the transmission coefficient, which can be cast in a universal form for two practically relevant classes of source layers. Due to the so-called frustrated total internal reflection, the structure transparency is highly sensitive to the intermediate layer thickness and index contrast. We show that the transmission coefficient for isotropic radiation may remain low even for optically thin low-index intermediate layers, so that the usual comparison between the optical thickness and the wavelength is no longer a reliable criterion. Calculations are presented for exemplary structures, such as a semiconductor scintillator bonded to a photodiode. The angular dependence of the transmission coefficient is shown to satisfy a simple and universal sum rule.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).
  2. D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, H. Benisty, "High-efficiency semiconductor resonant-cavity light-emitting diodes: A review," IEEE J. Sel. Topics Quantum Electron. 8, 189-206 (2002).
  3. M. A. Remennyi, N. V. Zotova, A. A. Kardashev, B. A. Matveev, N. M. Stus', G. N. Talalakin, "Low voltage episide down bonded mid-IR diode optopairs for gas sensing in the 3.3–4.3 $\mu$m spectral range," Sens. Actuators B, Chem. 91, 256-261 (2003).
  4. H. Gauck, T. H. Gfroerer, M. J. Rean, E. A. Cornell, K. A. Bertness, "External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure," Appl. Phys. A, Mater. Sci. Process. 64, 143-147 (1997).
  5. A. A. Kastalsky, S. Luryi, B. Spivak, "Semiconductor high-energy radiation scintillation detector," Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 565, 650-656 (2006).
  6. D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, "Low temperature, strong SiO$_2$-SiO$_2$ covalent wafer bonding for III--V compound semiconductors-to-silicon photonic integrated circuits," J. Electron. Mater. 37, 1552-1559 (2008).
  7. S. Zhu, A. W. Yu, D. Hawley, R. Roy, "Frustrated total internal reflection: A demonstration and review," Amer. J. Phys. 54, 601-607 (1986).
  8. L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, 1984).
  9. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, "Ultrahigh spontaneous quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
  10. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).
  11. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  12. I. N. Court, F. K. Willisen, "Frustrated total internal reflection and application of its principle to laser cavity design," Appl. Opt. 3, 719-726 (1964).
  13. F. Abelès, "Optical properties of thin absorbing films," J. Opt. Soc. Amer. 47, 473-482 (1957).
  14. A. Mereuta, V. Iakovlev, A. Caliman, A. Syrbu, P. Royo, A. Rudra, E. Kapon, "In(Al)GaAs-AlGaAs wafer fused VCSELs emitting at 2-$\mu$m wavelength," IEEE Photon. Technol. Lett. 20, 24-26 (2008).
  15. L. Sagalowicz, A. Rudra, E. Kapon, M. Hammar, F. Salomonsson, A. Black, P.-H. Jouneau, T. Wipijewski, "Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding," J. Appl. Phys. 87, 4135-4146 (2000).
  16. W. van Roosbroeck, W. Shockley, "Photon-radiative recombination of electrons and holes in germanium," Phys. Rev. 94, 1558-1560 (1954).
  17. P. M. Mathews, K. Venkatesan, A Textbook of Quantum Mechanics (McGraw-Hill, 1978) pp. 62.
  18. M. Visser, "Some general bounds for one-dimensional scattering," Phys. Rev. A, Gen. Phys. 59, 427-438 (1999).

2008 (2)

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, "Low temperature, strong SiO$_2$-SiO$_2$ covalent wafer bonding for III--V compound semiconductors-to-silicon photonic integrated circuits," J. Electron. Mater. 37, 1552-1559 (2008).

A. Mereuta, V. Iakovlev, A. Caliman, A. Syrbu, P. Royo, A. Rudra, E. Kapon, "In(Al)GaAs-AlGaAs wafer fused VCSELs emitting at 2-$\mu$m wavelength," IEEE Photon. Technol. Lett. 20, 24-26 (2008).

2006 (1)

A. A. Kastalsky, S. Luryi, B. Spivak, "Semiconductor high-energy radiation scintillation detector," Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 565, 650-656 (2006).

2003 (1)

M. A. Remennyi, N. V. Zotova, A. A. Kardashev, B. A. Matveev, N. M. Stus', G. N. Talalakin, "Low voltage episide down bonded mid-IR diode optopairs for gas sensing in the 3.3–4.3 $\mu$m spectral range," Sens. Actuators B, Chem. 91, 256-261 (2003).

2002 (1)

D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, H. Benisty, "High-efficiency semiconductor resonant-cavity light-emitting diodes: A review," IEEE J. Sel. Topics Quantum Electron. 8, 189-206 (2002).

2000 (1)

L. Sagalowicz, A. Rudra, E. Kapon, M. Hammar, F. Salomonsson, A. Black, P.-H. Jouneau, T. Wipijewski, "Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding," J. Appl. Phys. 87, 4135-4146 (2000).

1999 (1)

M. Visser, "Some general bounds for one-dimensional scattering," Phys. Rev. A, Gen. Phys. 59, 427-438 (1999).

1997 (1)

H. Gauck, T. H. Gfroerer, M. J. Rean, E. A. Cornell, K. A. Bertness, "External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure," Appl. Phys. A, Mater. Sci. Process. 64, 143-147 (1997).

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, "Ultrahigh spontaneous quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).

1986 (1)

S. Zhu, A. W. Yu, D. Hawley, R. Roy, "Frustrated total internal reflection: A demonstration and review," Amer. J. Phys. 54, 601-607 (1986).

1964 (1)

1957 (1)

F. Abelès, "Optical properties of thin absorbing films," J. Opt. Soc. Amer. 47, 473-482 (1957).

1954 (1)

W. van Roosbroeck, W. Shockley, "Photon-radiative recombination of electrons and holes in germanium," Phys. Rev. 94, 1558-1560 (1954).

Amer. J. Phys. (1)

S. Zhu, A. W. Yu, D. Hawley, R. Roy, "Frustrated total internal reflection: A demonstration and review," Amer. J. Phys. 54, 601-607 (1986).

Appl. Opt. (1)

Appl. Phys. A, Mater. Sci. Process. (1)

H. Gauck, T. H. Gfroerer, M. J. Rean, E. A. Cornell, K. A. Bertness, "External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure," Appl. Phys. A, Mater. Sci. Process. 64, 143-147 (1997).

Appl. Phys. Lett. (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, "Ultrahigh spontaneous quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).

IEEE J. Sel. Topics Quantum Electron. (1)

D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, H. Benisty, "High-efficiency semiconductor resonant-cavity light-emitting diodes: A review," IEEE J. Sel. Topics Quantum Electron. 8, 189-206 (2002).

IEEE Photon. Technol. Lett. (1)

A. Mereuta, V. Iakovlev, A. Caliman, A. Syrbu, P. Royo, A. Rudra, E. Kapon, "In(Al)GaAs-AlGaAs wafer fused VCSELs emitting at 2-$\mu$m wavelength," IEEE Photon. Technol. Lett. 20, 24-26 (2008).

J. Appl. Phys. (1)

L. Sagalowicz, A. Rudra, E. Kapon, M. Hammar, F. Salomonsson, A. Black, P.-H. Jouneau, T. Wipijewski, "Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding," J. Appl. Phys. 87, 4135-4146 (2000).

J. Electron. Mater. (1)

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, "Low temperature, strong SiO$_2$-SiO$_2$ covalent wafer bonding for III--V compound semiconductors-to-silicon photonic integrated circuits," J. Electron. Mater. 37, 1552-1559 (2008).

J. Opt. Soc. Amer. (1)

F. Abelès, "Optical properties of thin absorbing films," J. Opt. Soc. Amer. 47, 473-482 (1957).

Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. (1)

A. A. Kastalsky, S. Luryi, B. Spivak, "Semiconductor high-energy radiation scintillation detector," Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 565, 650-656 (2006).

Phys. Rev. (1)

W. van Roosbroeck, W. Shockley, "Photon-radiative recombination of electrons and holes in germanium," Phys. Rev. 94, 1558-1560 (1954).

Phys. Rev. A, Gen. Phys. (1)

M. Visser, "Some general bounds for one-dimensional scattering," Phys. Rev. A, Gen. Phys. 59, 427-438 (1999).

Sens. Actuators B, Chem. (1)

M. A. Remennyi, N. V. Zotova, A. A. Kardashev, B. A. Matveev, N. M. Stus', G. N. Talalakin, "Low voltage episide down bonded mid-IR diode optopairs for gas sensing in the 3.3–4.3 $\mu$m spectral range," Sens. Actuators B, Chem. 91, 256-261 (2003).

Other (5)

T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).

L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, 1984).

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).

L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).

P. M. Mathews, K. Venkatesan, A Textbook of Quantum Mechanics (McGraw-Hill, 1978) pp. 62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.