Abstract

Time-stretch photonic analog-to-digital converter (ADC) technology is used to make an optical front end that compresses radio-frequency (RF) bandwidth before input to a digital oscilloscope. To operate a time-stretch ADC in a continuous-time mode for bandwidth compression, the optical signal on which the RF is modulated must be segmented and demultiplexed. We demonstrate both spectral and temporal methods for overlapping the channels. Using the temporal method, we obtain a compression ratio of 3 with four channels. Mating this optical front end with a state-of-the-art four-channel digital oscilloscope with an input bandwidth of 16 GHz and a sampling rate of 50 GS/s gives a digitizer with 150 GS/s and an input bandwidth of 48 GHz. We digitize RF signals up to 45 GHz and obtain effective number of bits (ENOB) ${\sim} 2.8$ with single channels and ${\sim} 2.5$ with multiple channels, both measured over the 48-GHz instantaneous bandwidth of our system.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Pickerd, "DSP in high performance oscilloscopes," Tektronix™ White Paper (2005).
  2. R. H. Walden, Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008).
  3. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, A. Montijo, "A 20 GS/s 8b ADC with a 1 MB memory in 0.18 $\mu$m CMOS," Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf. (2003) pp. 318-496.
  4. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, R. C. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001).
  5. P. Pupalaikis, "An 18 GHz bandwidth, 60 GS/s sample rate real-time waveform digitizing system," Proc. IEEE MTTS Int. Microw. Symp. (2007) pp. 195-198.
  6. Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).
  7. J. Chou, O. Boyraz, D. Solli, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, (2007) art. 161105.
  8. S. Gupta, B. Jalali, "Time-warp correction and calibration in photonic time-stretch analog-to-digital converter," Opt. Lett. 33, 2674-2676 (2008).
  9. G. A. Sefler, J. A. Conway, G. C. Valley, "Wide bandwidth, high resolution time-stretch ADC scalable to continuous-time operation," Proc. Conf. Lasers Electro-Opt. (2009).
  10. J. Chou, G. A. Sefler, J. A. Conway, G. C. Valley, B. Jalali, "4-channel continuous-time 77 GSa/s ADC using photonic bandwidth compression," Dig. Tech. Papers Microw. Photon. (2007) pp. 54-57.
  11. J. Chou, G. A. Sefler, J. A. Conway, G. C. Valley, B. Jalali, "150 GS/s real-time oscilloscope using a photonic front end," Dig. Tech. Paper Microw. Photon. (2008) pp. 35-38.
  12. J. Chou, T. S. Rose, J. A. Conway, G. C. Valley, B. Jalali, "Time-gated filter for sideband suppression," Opt. Lett. 34, 869-871 (2009).

2009 (1)

2008 (1)

2007 (1)

J. Chou, O. Boyraz, D. Solli, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, (2007) art. 161105.

2005 (1)

J. Pickerd, "DSP in high performance oscilloscopes," Tektronix™ White Paper (2005).

2003 (1)

Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, R. C. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001).

Appl. Phys. Lett. (1)

J. Chou, O. Boyraz, D. Solli, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, (2007) art. 161105.

IEEE Trans. Microw. Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, R. C. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001).

J. Lightw. Technol. (1)

Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).

Opt. Lett. (2)

Tektronix™ White Paper (1)

J. Pickerd, "DSP in high performance oscilloscopes," Tektronix™ White Paper (2005).

Other (6)

R. H. Walden, Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008).

K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, A. Montijo, "A 20 GS/s 8b ADC with a 1 MB memory in 0.18 $\mu$m CMOS," Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf. (2003) pp. 318-496.

P. Pupalaikis, "An 18 GHz bandwidth, 60 GS/s sample rate real-time waveform digitizing system," Proc. IEEE MTTS Int. Microw. Symp. (2007) pp. 195-198.

G. A. Sefler, J. A. Conway, G. C. Valley, "Wide bandwidth, high resolution time-stretch ADC scalable to continuous-time operation," Proc. Conf. Lasers Electro-Opt. (2009).

J. Chou, G. A. Sefler, J. A. Conway, G. C. Valley, B. Jalali, "4-channel continuous-time 77 GSa/s ADC using photonic bandwidth compression," Dig. Tech. Papers Microw. Photon. (2007) pp. 54-57.

J. Chou, G. A. Sefler, J. A. Conway, G. C. Valley, B. Jalali, "150 GS/s real-time oscilloscope using a photonic front end," Dig. Tech. Paper Microw. Photon. (2008) pp. 35-38.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.