Abstract

Differential phase shift keying (DPSK) modulation is being considered as a possible candidate for future optical wavelength division multiplexed (WDM) transmission systems. In a single channel link, the balanced interferometric DPSK receiver exhibits increased tolerance against amplified spontaneous emitting (ASE) noise and fiber nonlinear effects. In this paper, a model is presented that can be used to estimate the performance of a multichannel DPSK system taking into account the influence of interchannel phenomena, namely cross-phase modulation (XPM) and four wave mixing (FWM), in the phase noise statistics. The model is based on an approximate solution of the fiber propagation equation and the multicanonical Monte Carlo (MCMC) method. It provides an efficient tool that can be used to investigate the influence of many link design parameters such as channel spacing, launch power, and fiber dispersion. The model is illustrated in the comparison of the performance of multichannel DPSK to on-off keying (OOK) systems. It is verified that, even in the presence of interchannel effects, DPSK modulation greatly enhances the system performance compared to OOK.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription