Abstract

In this paper, we study three types of jammers, namely, pulse-jammer, partial-band jammer, and follower-jammer, in a typical fiber-optic-based spectrally phase-encoded optical code division multiple-access (SPE-OCDMA) system. We analyze, mathematically, the effects of the aforementioned jammers on the performance of an SPE-OCDMA system for two scenarios, namely, ideal noiseless channel with an ideal optimum receiver and an ultrahigh-speed nonlinear receiver based on two-photon-absorption (TPA) in a noisy channel. Also, for each of the above cases, two types of modulation, namely, on–off keying (OOK) and two-code keying $(2{\rm CK})$ are investigated and their system performances are compared. It is shown that under certain conditions, the system performance can be dramatically degraded due to the jamming signals; also, systems using $2{\rm CK}$ modulation show a better resistance and performance when compared to systems using OOK modulation.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription