Abstract

A combination of a higher order accurate FDTD algorithm, a decoupling procedure, and a moving computational window is presented for the solution of the phase-sensitive second harmonic generation problem. The requirement that the spatial step size in the propagation direction be a small fraction of the wavelength is significantly relaxed using the proposed efficient FDTD schemes. It has been shown that these fully explicit schemes deliver convergence of the solution using significantly less computation time and less memory requirement as compared to the standard FDTD scheme.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription