Abstract

A method for obtaining the optimal canonic design of optical filters based on parallel-cascaded arrays of symmetric two-port microring networks is presented. The approach is based on the all-pass decomposition of the parallel-cascaded microring architecture, whereby the filter is transformed into an equivalent sum-difference all-pass microring circuit via a similarity transformation of the transfer matrix. The sum-difference transformation also helps reveal important properties of the parallel-cascaded microring architecture, such as the doubly complementary nature of its transfer functions, and the existence and uniqueness of the canonic form of parallel-cascaded arrays of symmetric microring networks.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription