Abstract

The rejection band of a long-period fiber grating written in a heavily twisted single-mode fiber by a CO$_{2}$ laser can split into two, when the twist applied to the fiber is removed after the writing of the grating. We attribute the wavelength-splitting effect to the generation of a rotary frozen-in torsion strain along the fiber in the writing process. The wavelength split increases with the twist rate and the effect is independent of the polarization state of light. We present a simple expression to estimate the wavelength split, which agrees reasonably well with the experimental results. We also measure the temperature and torsion characteristics of the grating. Such a grating could find applications as an optical filter or a temperature-insensitive torsion sensor.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription