Abstract

The 3-D finite difference time domain (FDTD) cut-back method is used to study losses in nondisordered photonic crystal silicon membrane waveguides. Losses above the light-line have been shown to be in good agreement with other methods. Below the light-line, however, FDTD is predicting a rapid increase in losses. This paper studies the possible causes for this effect, including meshing effects, back reflections, and finite thickness sidewalls. It is found that since below the light-line the group index becomes very high and the loss becomes very low, strong Fabry–Perot oscillations dominate the cut-back results. The paper also discusses the impact of operating near to the cut-off wavelength of the photonic crystal waveguide Bloch mode and the implications this has for loss calculation.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription