Abstract

We report the detailed numerical investigation of stress-induced material birefringence in polymer rib waveguide for the design of nonbirefringent waveguide devices. To accurately simulate the stress-induced effects we propose a more realistic model in the finite element analysis which considers the stresses induced over the entire sequential fabrication process. It is observed that the birefringence is nonuniform, and it is different for different etch depth and core width. The maximum birefringence in the core layer is observed near the lower cladding which decreases to zero toward the top surface. The influence of this material anisotropy on the modal birefringence is analyzed also for different rib structures. We found the stress effects on the modal birefringence to be largely affected by etch depth, while core width has small effect. It is also found that the deeply etched core has better birefringence stability. Finally, an accurate design of the zero-birefringence waveguide is illustrated by taking the stress effects into account, and the results are compared with experimental data. Excellent agreement between calculated and experimental results confirms the potential application of this work to aid in the design of polarization-insensitive waveguide devices.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. L. Eldada, L. W. Shacklette, "Advances in polymer integeated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).
  2. H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing and devices," Adv. Mater. 14, 1339-1365 (2002).
  3. M. Zhou, "Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication," Opt. Eng. 41, 1631-1643 (2002).
  4. R. A. Steinberg, T. G. Giallorenzi, "Performance limitations imposed on optical waveguide switches and modulators by polarization," Appl. Opt. 15, 2440-2452 (1976).
  5. R. Noé, H. J. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittman, F. Auracher, "Comparison of polarization handling methods in coherent optical systems," J. Lightw. Technol. 9, 1353-1366 (1991).
  6. T. C. Chen, J. Kuo, W. L. Lee, C. C. Lee, "Influences of temperature and stress on transmission characteristics of multilayer thin-film narrow bandpass filters," Jpn. J. Appl. Phys. 40, 4087-4096 (2001).
  7. M. Huang, "Stress effects on the performance of optical waveguides," Int. J. Solids Struct. 40, 1615-1632 (2003).
  8. K. Wörhoff, B. J. Offrein, P. V. Lambeck, G. L. Bona, A. Driessen, "Birefringence compensation applying double-core waveguiding structures," IEEE Photon. Technol. Lett. 11, 206-208 (1999).
  9. K. S. Chiang, W. P. Wong, "Rib waveguides with degenerate polarized modes," Electron. Lett. 32, 1098-1099 (2003).
  10. W. P. Wong, K. S. Chiang, "Design of polarization-insensitive Bragg gratings in zero birefringence ridge waveguide," IEEE J. Quantum Electron. 37, 1138-1145 (2001).
  11. S. Y. Cheng, K. S. Chiang, H. P. Chan, "Birefringence characteristics of benzocyclobutene rib optical waveguides," Electron. Lett. 40, 372-374 (2004).
  12. S. Y. Cheng, K. S. Chiang, H. P. Chan, "Polarization-insensitive polymer waveguide Bragg gratings," Micro. Opt. Technol. Lett. 48, 334-338 (2006).
  13. X. Zhao, Y. Z. Xu, C. Li, "Birefringence control in optical planar waveguide," J. Lightw. Technol. 21, 2352-2357 (2003).
  14. M. Huang, "Thermal stresses in optical waveguides," Opt. Lett. 28, 2327-2329 (2003).
  15. W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightw. Technol. 23, 1308-1318 (2005).
  16. H. P. Schriemer, M. Cada, "Modal birefringence and power density distribution in strained buried-core square waveguides," IEEE J. Quantum Electron. 40, 1131-1139 (2001).
  17. K. Okamoto, T. Hosaka, T. Edahiro, "Stress analysis of optical fibers by a finite element method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
  18. H. P. Chan, C. K. Chow, A. K. Das, "A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk," IEEE Photon. Technol. Lett. 15, 1210-1212 (2003).
  19. R. C. Dune, S. K. Sitaraman, "An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach," IEEE Trans. Electron. Packag. Manufact. 25, 326-334 (2002).
  20. MSC. MARC Users' Guide MSC. Software Corp.Santa AnnaCA (MSC. Software Corp., 2001).
  21. M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, "Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide," J. Electron. Mater. 33, 224-228 (2004).
  22. K. C. Chan, M. Teo, Z. W. Zhong, "Characterization of low-k benzocyclobutene dielectric thin film," Microelectron. Int. 20, 11-22 (2003).
  23. K. Okamoto, Fundamentals of Optical Waveguides. (Academic, 2000).
  24. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, S. Agan, "Prism coupling technique investigation of elasto-optical properties of thin polymer films," J. Appl. Phys. 96, 7147-7153 (2004).
  25. S. V. Burke, "Planar waveguide analysis by the spectral index method: II. Multiple layers optical gain and loss," Opt. Quantum Electron. 26, 63-77 (1994).
  26. P. C. Kendall, M. S. Stern, P. V. Robson, "Discrete spectral index method for rib waveguide analysis," Opt. Quantum Electron. 22, 555-560 (1990).
  27. K. S. Chiang, "Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides," Opt. Quantum Electron. 26, S113-S134 (1994).
  28. J.-H. Zhao, W.-J. Qi, P. S. Ho, "Thermomechanical property of diffusion barrier layer and its effect on stress characteristics of copper submicron interconnect structures," Microelectron. Reliab. 42, 27-34 (2002).
  29. Benzocyclobutene (BCB) thermal and mechanical properties http://www.dow.com/cyclotene/solution/thermprop.htm.
  30. S. Guo, I. Lundström, H. Arwin, "Temperature sensitivity and thermal expansion coefficient of benzocyclobutene thin films studied with ellipsometry," Appl. Phys. Lett. 68, 1910-1912 (1996).
  31. K. Fischer, J. Muller, R. Hoffman, F. Wasse, D. Salle, "Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor," J. Lightw. Technol. 12, 163-169 (1994).

2006 (1)

S. Y. Cheng, K. S. Chiang, H. P. Chan, "Polarization-insensitive polymer waveguide Bragg gratings," Micro. Opt. Technol. Lett. 48, 334-338 (2006).

2005 (1)

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightw. Technol. 23, 1308-1318 (2005).

2004 (3)

M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, "Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide," J. Electron. Mater. 33, 224-228 (2004).

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, S. Agan, "Prism coupling technique investigation of elasto-optical properties of thin polymer films," J. Appl. Phys. 96, 7147-7153 (2004).

S. Y. Cheng, K. S. Chiang, H. P. Chan, "Birefringence characteristics of benzocyclobutene rib optical waveguides," Electron. Lett. 40, 372-374 (2004).

2003 (6)

M. Huang, "Thermal stresses in optical waveguides," Opt. Lett. 28, 2327-2329 (2003).

K. C. Chan, M. Teo, Z. W. Zhong, "Characterization of low-k benzocyclobutene dielectric thin film," Microelectron. Int. 20, 11-22 (2003).

H. P. Chan, C. K. Chow, A. K. Das, "A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk," IEEE Photon. Technol. Lett. 15, 1210-1212 (2003).

X. Zhao, Y. Z. Xu, C. Li, "Birefringence control in optical planar waveguide," J. Lightw. Technol. 21, 2352-2357 (2003).

K. S. Chiang, W. P. Wong, "Rib waveguides with degenerate polarized modes," Electron. Lett. 32, 1098-1099 (2003).

M. Huang, "Stress effects on the performance of optical waveguides," Int. J. Solids Struct. 40, 1615-1632 (2003).

2002 (4)

R. C. Dune, S. K. Sitaraman, "An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach," IEEE Trans. Electron. Packag. Manufact. 25, 326-334 (2002).

H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing and devices," Adv. Mater. 14, 1339-1365 (2002).

M. Zhou, "Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication," Opt. Eng. 41, 1631-1643 (2002).

J.-H. Zhao, W.-J. Qi, P. S. Ho, "Thermomechanical property of diffusion barrier layer and its effect on stress characteristics of copper submicron interconnect structures," Microelectron. Reliab. 42, 27-34 (2002).

2001 (3)

H. P. Schriemer, M. Cada, "Modal birefringence and power density distribution in strained buried-core square waveguides," IEEE J. Quantum Electron. 40, 1131-1139 (2001).

T. C. Chen, J. Kuo, W. L. Lee, C. C. Lee, "Influences of temperature and stress on transmission characteristics of multilayer thin-film narrow bandpass filters," Jpn. J. Appl. Phys. 40, 4087-4096 (2001).

W. P. Wong, K. S. Chiang, "Design of polarization-insensitive Bragg gratings in zero birefringence ridge waveguide," IEEE J. Quantum Electron. 37, 1138-1145 (2001).

2000 (1)

L. Eldada, L. W. Shacklette, "Advances in polymer integeated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).

1999 (1)

K. Wörhoff, B. J. Offrein, P. V. Lambeck, G. L. Bona, A. Driessen, "Birefringence compensation applying double-core waveguiding structures," IEEE Photon. Technol. Lett. 11, 206-208 (1999).

1996 (1)

S. Guo, I. Lundström, H. Arwin, "Temperature sensitivity and thermal expansion coefficient of benzocyclobutene thin films studied with ellipsometry," Appl. Phys. Lett. 68, 1910-1912 (1996).

1994 (3)

K. Fischer, J. Muller, R. Hoffman, F. Wasse, D. Salle, "Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor," J. Lightw. Technol. 12, 163-169 (1994).

K. S. Chiang, "Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides," Opt. Quantum Electron. 26, S113-S134 (1994).

S. V. Burke, "Planar waveguide analysis by the spectral index method: II. Multiple layers optical gain and loss," Opt. Quantum Electron. 26, 63-77 (1994).

1991 (1)

R. Noé, H. J. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittman, F. Auracher, "Comparison of polarization handling methods in coherent optical systems," J. Lightw. Technol. 9, 1353-1366 (1991).

1990 (1)

P. C. Kendall, M. S. Stern, P. V. Robson, "Discrete spectral index method for rib waveguide analysis," Opt. Quantum Electron. 22, 555-560 (1990).

1981 (1)

K. Okamoto, T. Hosaka, T. Edahiro, "Stress analysis of optical fibers by a finite element method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).

1976 (1)

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing and devices," Adv. Mater. 14, 1339-1365 (2002).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Guo, I. Lundström, H. Arwin, "Temperature sensitivity and thermal expansion coefficient of benzocyclobutene thin films studied with ellipsometry," Appl. Phys. Lett. 68, 1910-1912 (1996).

Electron. Lett. (2)

K. S. Chiang, W. P. Wong, "Rib waveguides with degenerate polarized modes," Electron. Lett. 32, 1098-1099 (2003).

S. Y. Cheng, K. S. Chiang, H. P. Chan, "Birefringence characteristics of benzocyclobutene rib optical waveguides," Electron. Lett. 40, 372-374 (2004).

IEEE J. Quantum Electron. (3)

H. P. Schriemer, M. Cada, "Modal birefringence and power density distribution in strained buried-core square waveguides," IEEE J. Quantum Electron. 40, 1131-1139 (2001).

K. Okamoto, T. Hosaka, T. Edahiro, "Stress analysis of optical fibers by a finite element method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).

W. P. Wong, K. S. Chiang, "Design of polarization-insensitive Bragg gratings in zero birefringence ridge waveguide," IEEE J. Quantum Electron. 37, 1138-1145 (2001).

IEEE J. Sel. Topics Quantum Electron. (1)

L. Eldada, L. W. Shacklette, "Advances in polymer integeated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).

IEEE Photon. Technol. Lett. (2)

H. P. Chan, C. K. Chow, A. K. Das, "A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk," IEEE Photon. Technol. Lett. 15, 1210-1212 (2003).

K. Wörhoff, B. J. Offrein, P. V. Lambeck, G. L. Bona, A. Driessen, "Birefringence compensation applying double-core waveguiding structures," IEEE Photon. Technol. Lett. 11, 206-208 (1999).

IEEE Trans. Electron. Packag. Manufact. (1)

R. C. Dune, S. K. Sitaraman, "An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach," IEEE Trans. Electron. Packag. Manufact. 25, 326-334 (2002).

Int. J. Solids Struct. (1)

M. Huang, "Stress effects on the performance of optical waveguides," Int. J. Solids Struct. 40, 1615-1632 (2003).

J. Appl. Phys. (1)

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, S. Agan, "Prism coupling technique investigation of elasto-optical properties of thin polymer films," J. Appl. Phys. 96, 7147-7153 (2004).

J. Electron. Mater. (1)

M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, "Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide," J. Electron. Mater. 33, 224-228 (2004).

J. Lightw. Technol. (4)

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightw. Technol. 23, 1308-1318 (2005).

K. Fischer, J. Muller, R. Hoffman, F. Wasse, D. Salle, "Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor," J. Lightw. Technol. 12, 163-169 (1994).

R. Noé, H. J. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittman, F. Auracher, "Comparison of polarization handling methods in coherent optical systems," J. Lightw. Technol. 9, 1353-1366 (1991).

X. Zhao, Y. Z. Xu, C. Li, "Birefringence control in optical planar waveguide," J. Lightw. Technol. 21, 2352-2357 (2003).

Jpn. J. Appl. Phys. (1)

T. C. Chen, J. Kuo, W. L. Lee, C. C. Lee, "Influences of temperature and stress on transmission characteristics of multilayer thin-film narrow bandpass filters," Jpn. J. Appl. Phys. 40, 4087-4096 (2001).

Micro. Opt. Technol. Lett. (1)

S. Y. Cheng, K. S. Chiang, H. P. Chan, "Polarization-insensitive polymer waveguide Bragg gratings," Micro. Opt. Technol. Lett. 48, 334-338 (2006).

Microelectron. Int. (1)

K. C. Chan, M. Teo, Z. W. Zhong, "Characterization of low-k benzocyclobutene dielectric thin film," Microelectron. Int. 20, 11-22 (2003).

Microelectron. Reliab. (1)

J.-H. Zhao, W.-J. Qi, P. S. Ho, "Thermomechanical property of diffusion barrier layer and its effect on stress characteristics of copper submicron interconnect structures," Microelectron. Reliab. 42, 27-34 (2002).

Opt. Eng. (1)

M. Zhou, "Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication," Opt. Eng. 41, 1631-1643 (2002).

Opt. Lett. (1)

Opt. Quantum Electron. (3)

S. V. Burke, "Planar waveguide analysis by the spectral index method: II. Multiple layers optical gain and loss," Opt. Quantum Electron. 26, 63-77 (1994).

P. C. Kendall, M. S. Stern, P. V. Robson, "Discrete spectral index method for rib waveguide analysis," Opt. Quantum Electron. 22, 555-560 (1990).

K. S. Chiang, "Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides," Opt. Quantum Electron. 26, S113-S134 (1994).

Other (3)

K. Okamoto, Fundamentals of Optical Waveguides. (Academic, 2000).

Benzocyclobutene (BCB) thermal and mechanical properties http://www.dow.com/cyclotene/solution/thermprop.htm.

MSC. MARC Users' Guide MSC. Software Corp.Santa AnnaCA (MSC. Software Corp., 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.