Abstract

In this paper, we investigate the effects of complex energy transfer dynamics and Gaussian profiles on the gain and noise figure performance of erbium-doped fiber amplifiers (EDFAs) with high doping concentration. We use a two-level system to study the complex energy transfer dynamics that comes from the homogeneous up-conversion (HUC) and the pair-induced quenching (PIQ). In our model, the system is stimulated by a pump source at the wavelength of 1480 nm and operated with a signal source at the wavelength of 1560 nm. Assuming a uniform distribution of erbium ions in the fiber core, we approximate the fundamental mode distributions by Gaussian profiles which are commonly used to calculate the mode radius or spot size. Using the numerical calculations and analysis of the rate and power propagation equations for a two-level model under consideration, the most advantageous Gaussian profile is determined as the Whitley mode radius to obtain a high-gain and a low-noise figure per unit length of silica-based fiber amplifiers. The effects of the number of ions per cluster and the percentage of ions in clusters on the calculated gain and noise figure are compared for several pump powers. Results are discussed to achieve a desired gain and noise figure performance, and compared with the available experimental data to verify the feasibility of the model.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. Shimizu, M. Yamada, M. Horiguchi, E. Sugita, "Concentration effect on optical amplification characteristics of Er-doped silica single-mode fibers," IEEE Photon. Technol. Lett. 2, 43-45 (1990).
  2. P. Blixt, J. Nilsson, T. Carlnas, B. Jaskorzynska, "Concentration-dependent upconversion in Er$^{3+}$-doped fiber amplifiers: Experiments and modeling," IEEE Photon. Technol. Lett. 3, 996-998 (1991).
  3. H. Masuda, A. Takada, K. Aida, "Modeling the gain degradation of high concentration erbium-doped fiber amplifiers by introducing inhomogeneous up-conversion," J. Lightw. Technol. 10, 1789-1799 (1992).
  4. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, J.-F. Bayon, "Modeling of pair-induced quenching in Erbium-doped silicate fibers," IEEE Photon. Technol. Lett. 5, 73-75 (1993).
  5. J. Nilsson, B. Jaskorzynska, P. Blixt, "Performance reduction and design modification of Erbium-doped fiber amplifiers resulting from pair-induced quenching," IEEE Photon. Technol. Lett. 5, 1427-1429 (1993).
  6. E. Desurvire, Erbium-Doped Fiber Amplifiers; Principle and Applications (Wiley, 1994).
  7. F. Di Pasquale, M. Federighi, "Modeling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides," J. Lightw. Technol. 13, 1858-1864 (1995).
  8. P. Myslinski, D. Nguen, J. Chrostowski, "Effects of concentration on the performance of erbium-doped fiber amplifiers," J. Lightw. Technol. 15, 112-120 (1997).
  9. S. Jiang, M. Myers, N. Peyghambarian, "Er$^{3+}$ doped phosphate glasses and lasers," J. Non-Crystalline Solids 239, 143-148 (1998).
  10. B. C. Hwang, S. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Performance of high-concentration Er$^{3+}$-doped phosphate fiber amplifiers," IEEE Photon. Technol. Lett. 13, 197-199 (2001).
  11. C. Berkdemir, S. Özsoy, "An investigation on the temperature dependence of the relative population inversion and the gain in EDFAs by the modified rate equations," Opt. Commun. 254, 248-255 (2005).
  12. C. Berkdemir, S. Özsoy, "The temperature dependent performance analysis of EDFAs pumped at 1480 nm: A more accurate propagation equation," Opt. Express 13, 5179-5185 (2005).
  13. C. Berkdemir, S. Özsoy, "On the temperature-dependent gain and noise figure analysis of C-band high-concentration EDFAs with the effect of cooperative upconversion," J. Lightw. Technol. 27, 1122-1127 (2009).
  14. C. Jiang, W. Hu, Q. Zeng, "Numerical analysis of concentration quenching model of Er$^{3+}$-doped phosphate fiber amplifier," IEEE J. Quantum Electron. 39, 1266-1270 (2003).
  15. C. Jiang, W. Hu, Q. Zeng, "Improved gain characteristics of high concentration Erbium-doped phosphate fiber amplifier," IEEE Photon. Technol. Lett. 16, 774-776 (2004).
  16. C. Jiang, Q. Zen, "Optimization of erbium-doped waveguide amplifier," Opt. Laser Technol. 36, 167-171 (2004).
  17. S. Ono, S. Tanabe, "Evaluation of quenching effect on gain characteristics in silica-based erbium doped fiber using numerical simulation," J. Alloys Compounds 408–412, 732-736 (2006).
  18. J. Li, K. Duan, Y. Wang, W. Zhao, Y. Guo, X. Lin, "Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters," Opt. Commun. 277, 143-149 (2007).
  19. Y. C. Yan, A. J. Faber, H. deWaal, P. G. Kik, A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 nm," Appl. Phys. Lett. 71, 2922-2924 (1997).
  20. B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, N. Peyghambarian, "Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1 dB/cm," Electron. Lett. 35, 1007-1009 (1999).
  21. S. Jiang, B. C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Net gain of 15.5 dB from a 5.1 cm long Er-doped phosphate glass fiber," Tech. Dig. Opt. Fiber Commun. Conf. (2000).
  22. A. Mori, Y. Ohishi, S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 43, 863-864 (1997).
  23. Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, J. H. Kim, H. J. Seo, N. Peyghambarian, "Numerical analysis of the population dynamics and determination of the upconversion coefficients in a new erbium doped tellurite glass," J. Opt. Soc. Amer. B, Opt. Phys. 18, 1928-1934 (2001).
  24. K. S. Abedin, G.-W. Lu, T. Miyazaki, "Slow light generation in single mode Er-doped tellurite fibre," Electron. Lett. 44, 16-17 (2008).
  25. S. Shen, A. Jha, X. Liu, M. Naftaiy, K. S. Bindra, H. T. Bookey, K. K. Kar, "Tellurite glasses for broadband amplifiers and integrated optics," J. Amer. Ceram. Soc. 85, 1391-1395 (2002).
  26. J. Nilsson, P. Scheer, B. Jaskorzynska, "Modeling and optimization of short Yb$^{3+}$-sensitized Er$^{3+}$-doped fiber amplifiers," IEEE Photon. Technol. Lett. 6, 383-385 (1994).
  27. M. Federighi, F. Di Pasquale, "The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er$^{3+}$/Yb$^{3+}$ concentrations," IEEE Photon. Technol. Lett. 7, 303-305 (1995).
  28. K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, T. Teshima, "Influence of Yb$^{3+}$ and Ce$^{3+}$ codoping on fluorescence characteristics of Er$^{3+}$-doped fluoride glass under 980 nm excitation," Opt. Mater. 27, 337-342 (2004).
  29. C. Berkdemir, S. Özsoy, "Numerical analysis of the signal gain and noise figure of Yb$^{3+}$-sensitized Er$^{3+}$-doped fiber amplifiers at different pumping power configurations," Opt. Mater. 31, 229-232 (2008).
  30. B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er$^{3+}$- and Yb$^{3+}$-Er$^{3+}$-doped phosphate glasses," Opt. Soc. Amer. B 17, 833-839 (2000).
  31. D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1997).
  32. E. Desurvire, J. R. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).
  33. P. Myslinski, J. Chrostowski, "Gaussian mode radius polynomials for modelling doped fiber amplifiers and lasers," Microw. Opt. Technol. Lett. 11, 61-64 (1996).
  34. T. J. Whitley, R. Wyatt, "Alternative Gaussian spot size polynomial for use with doped fiber amplifiers," IEEE Photon. Technol. Lett. 5, 1325-1327 (1993).
  35. I. Nusinsky, A. A. Hardy, "Analysis of the effect of upconversion on signal amplification in Erbium-doped fiber amplifiers (EDFAs)," IEEE J. Quantum Electron. 39, 548-554 (2003).
  36. C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).
  37. J. Nilsson, B. Jaskorzynska, P. Blixt, "Implications of pair-induced quenching for erbium-doped fiber amplifiers," Opt. Amplifiers Their Appl. Tech. Dig. MD19-1, 222-225 (1993).
  38. A. Hardy, R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
  39. E. Desurvire, J. R. Simpson, "Amplified spontaneous emission in Erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).
  40. W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, "Absorption and emission cross section of Er$^{3+}$ doped silica fibers," IEEE J. Quantum Electron. 27, 1004-1010 (1991).
  41. P. Myslinski, C. Szubert, A. J. Bruce, D. J. DiGiovanni, B. Palsdottir, "Performance of high-concentration Erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 11, 973-975 (1999).
  42. S. Marjanovic, J. Toulousea, H. Jaina, C. Sandmanna, V. Dierolfa, A. R. Kortanb, N. Kopylovb, R. G. Ahrens, "Characterization of new erbium-doped tellurite glasses and fibers," J. Non-Crystalline Solids 322, 311-318 (2003).

2009 (1)

C. Berkdemir, S. Özsoy, "On the temperature-dependent gain and noise figure analysis of C-band high-concentration EDFAs with the effect of cooperative upconversion," J. Lightw. Technol. 27, 1122-1127 (2009).

2008 (2)

K. S. Abedin, G.-W. Lu, T. Miyazaki, "Slow light generation in single mode Er-doped tellurite fibre," Electron. Lett. 44, 16-17 (2008).

C. Berkdemir, S. Özsoy, "Numerical analysis of the signal gain and noise figure of Yb$^{3+}$-sensitized Er$^{3+}$-doped fiber amplifiers at different pumping power configurations," Opt. Mater. 31, 229-232 (2008).

2007 (1)

J. Li, K. Duan, Y. Wang, W. Zhao, Y. Guo, X. Lin, "Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters," Opt. Commun. 277, 143-149 (2007).

2006 (1)

S. Ono, S. Tanabe, "Evaluation of quenching effect on gain characteristics in silica-based erbium doped fiber using numerical simulation," J. Alloys Compounds 408–412, 732-736 (2006).

2005 (2)

C. Berkdemir, S. Özsoy, "An investigation on the temperature dependence of the relative population inversion and the gain in EDFAs by the modified rate equations," Opt. Commun. 254, 248-255 (2005).

C. Berkdemir, S. Özsoy, "The temperature dependent performance analysis of EDFAs pumped at 1480 nm: A more accurate propagation equation," Opt. Express 13, 5179-5185 (2005).

2004 (3)

C. Jiang, W. Hu, Q. Zeng, "Improved gain characteristics of high concentration Erbium-doped phosphate fiber amplifier," IEEE Photon. Technol. Lett. 16, 774-776 (2004).

C. Jiang, Q. Zen, "Optimization of erbium-doped waveguide amplifier," Opt. Laser Technol. 36, 167-171 (2004).

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, T. Teshima, "Influence of Yb$^{3+}$ and Ce$^{3+}$ codoping on fluorescence characteristics of Er$^{3+}$-doped fluoride glass under 980 nm excitation," Opt. Mater. 27, 337-342 (2004).

2003 (3)

I. Nusinsky, A. A. Hardy, "Analysis of the effect of upconversion on signal amplification in Erbium-doped fiber amplifiers (EDFAs)," IEEE J. Quantum Electron. 39, 548-554 (2003).

S. Marjanovic, J. Toulousea, H. Jaina, C. Sandmanna, V. Dierolfa, A. R. Kortanb, N. Kopylovb, R. G. Ahrens, "Characterization of new erbium-doped tellurite glasses and fibers," J. Non-Crystalline Solids 322, 311-318 (2003).

C. Jiang, W. Hu, Q. Zeng, "Numerical analysis of concentration quenching model of Er$^{3+}$-doped phosphate fiber amplifier," IEEE J. Quantum Electron. 39, 1266-1270 (2003).

2002 (1)

S. Shen, A. Jha, X. Liu, M. Naftaiy, K. S. Bindra, H. T. Bookey, K. K. Kar, "Tellurite glasses for broadband amplifiers and integrated optics," J. Amer. Ceram. Soc. 85, 1391-1395 (2002).

2001 (2)

Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, J. H. Kim, H. J. Seo, N. Peyghambarian, "Numerical analysis of the population dynamics and determination of the upconversion coefficients in a new erbium doped tellurite glass," J. Opt. Soc. Amer. B, Opt. Phys. 18, 1928-1934 (2001).

B. C. Hwang, S. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Performance of high-concentration Er$^{3+}$-doped phosphate fiber amplifiers," IEEE Photon. Technol. Lett. 13, 197-199 (2001).

2000 (1)

B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er$^{3+}$- and Yb$^{3+}$-Er$^{3+}$-doped phosphate glasses," Opt. Soc. Amer. B 17, 833-839 (2000).

1999 (2)

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, N. Peyghambarian, "Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1 dB/cm," Electron. Lett. 35, 1007-1009 (1999).

P. Myslinski, C. Szubert, A. J. Bruce, D. J. DiGiovanni, B. Palsdottir, "Performance of high-concentration Erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 11, 973-975 (1999).

1998 (1)

S. Jiang, M. Myers, N. Peyghambarian, "Er$^{3+}$ doped phosphate glasses and lasers," J. Non-Crystalline Solids 239, 143-148 (1998).

1997 (5)

P. Myslinski, D. Nguen, J. Chrostowski, "Effects of concentration on the performance of erbium-doped fiber amplifiers," J. Lightw. Technol. 15, 112-120 (1997).

A. Hardy, R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).

A. Mori, Y. Ohishi, S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 43, 863-864 (1997).

Y. C. Yan, A. J. Faber, H. deWaal, P. G. Kik, A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 nm," Appl. Phys. Lett. 71, 2922-2924 (1997).

D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1997).

1996 (1)

P. Myslinski, J. Chrostowski, "Gaussian mode radius polynomials for modelling doped fiber amplifiers and lasers," Microw. Opt. Technol. Lett. 11, 61-64 (1996).

1995 (2)

M. Federighi, F. Di Pasquale, "The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er$^{3+}$/Yb$^{3+}$ concentrations," IEEE Photon. Technol. Lett. 7, 303-305 (1995).

F. Di Pasquale, M. Federighi, "Modeling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides," J. Lightw. Technol. 13, 1858-1864 (1995).

1994 (1)

J. Nilsson, P. Scheer, B. Jaskorzynska, "Modeling and optimization of short Yb$^{3+}$-sensitized Er$^{3+}$-doped fiber amplifiers," IEEE Photon. Technol. Lett. 6, 383-385 (1994).

1993 (4)

T. J. Whitley, R. Wyatt, "Alternative Gaussian spot size polynomial for use with doped fiber amplifiers," IEEE Photon. Technol. Lett. 5, 1325-1327 (1993).

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, J.-F. Bayon, "Modeling of pair-induced quenching in Erbium-doped silicate fibers," IEEE Photon. Technol. Lett. 5, 73-75 (1993).

J. Nilsson, B. Jaskorzynska, P. Blixt, "Performance reduction and design modification of Erbium-doped fiber amplifiers resulting from pair-induced quenching," IEEE Photon. Technol. Lett. 5, 1427-1429 (1993).

J. Nilsson, B. Jaskorzynska, P. Blixt, "Implications of pair-induced quenching for erbium-doped fiber amplifiers," Opt. Amplifiers Their Appl. Tech. Dig. MD19-1, 222-225 (1993).

1992 (1)

H. Masuda, A. Takada, K. Aida, "Modeling the gain degradation of high concentration erbium-doped fiber amplifiers by introducing inhomogeneous up-conversion," J. Lightw. Technol. 10, 1789-1799 (1992).

1991 (3)

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, "Absorption and emission cross section of Er$^{3+}$ doped silica fibers," IEEE J. Quantum Electron. 27, 1004-1010 (1991).

P. Blixt, J. Nilsson, T. Carlnas, B. Jaskorzynska, "Concentration-dependent upconversion in Er$^{3+}$-doped fiber amplifiers: Experiments and modeling," IEEE Photon. Technol. Lett. 3, 996-998 (1991).

C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

1990 (1)

M. Shimizu, M. Yamada, M. Horiguchi, E. Sugita, "Concentration effect on optical amplification characteristics of Er-doped silica single-mode fibers," IEEE Photon. Technol. Lett. 2, 43-45 (1990).

1989 (2)

E. Desurvire, J. R. Simpson, "Amplified spontaneous emission in Erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).

E. Desurvire, J. R. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).

Appl. Phys. Lett. (1)

Y. C. Yan, A. J. Faber, H. deWaal, P. G. Kik, A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 nm," Appl. Phys. Lett. 71, 2922-2924 (1997).

Bell Syst. Tech. J. (1)

D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1997).

Electron. Lett. (3)

K. S. Abedin, G.-W. Lu, T. Miyazaki, "Slow light generation in single mode Er-doped tellurite fibre," Electron. Lett. 44, 16-17 (2008).

B. C. Hwang, S. Jiang, T. Luo, J. Watson, S. Honkanen, Y. Hu, F. Smektala, J. Lucas, N. Peyghambarian, "Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1 dB/cm," Electron. Lett. 35, 1007-1009 (1999).

A. Mori, Y. Ohishi, S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 43, 863-864 (1997).

IEEE J. Quantum Electron. (4)

C. Jiang, W. Hu, Q. Zeng, "Numerical analysis of concentration quenching model of Er$^{3+}$-doped phosphate fiber amplifier," IEEE J. Quantum Electron. 39, 1266-1270 (2003).

I. Nusinsky, A. A. Hardy, "Analysis of the effect of upconversion on signal amplification in Erbium-doped fiber amplifiers (EDFAs)," IEEE J. Quantum Electron. 39, 548-554 (2003).

A. Hardy, R. Oron, "Signal amplification in strongly pumped fiber amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, "Absorption and emission cross section of Er$^{3+}$ doped silica fibers," IEEE J. Quantum Electron. 27, 1004-1010 (1991).

IEEE Photon. Technol. Lett. (10)

P. Myslinski, C. Szubert, A. J. Bruce, D. J. DiGiovanni, B. Palsdottir, "Performance of high-concentration Erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 11, 973-975 (1999).

T. J. Whitley, R. Wyatt, "Alternative Gaussian spot size polynomial for use with doped fiber amplifiers," IEEE Photon. Technol. Lett. 5, 1325-1327 (1993).

M. Shimizu, M. Yamada, M. Horiguchi, E. Sugita, "Concentration effect on optical amplification characteristics of Er-doped silica single-mode fibers," IEEE Photon. Technol. Lett. 2, 43-45 (1990).

P. Blixt, J. Nilsson, T. Carlnas, B. Jaskorzynska, "Concentration-dependent upconversion in Er$^{3+}$-doped fiber amplifiers: Experiments and modeling," IEEE Photon. Technol. Lett. 3, 996-998 (1991).

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, J.-F. Bayon, "Modeling of pair-induced quenching in Erbium-doped silicate fibers," IEEE Photon. Technol. Lett. 5, 73-75 (1993).

J. Nilsson, B. Jaskorzynska, P. Blixt, "Performance reduction and design modification of Erbium-doped fiber amplifiers resulting from pair-induced quenching," IEEE Photon. Technol. Lett. 5, 1427-1429 (1993).

B. C. Hwang, S. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Performance of high-concentration Er$^{3+}$-doped phosphate fiber amplifiers," IEEE Photon. Technol. Lett. 13, 197-199 (2001).

C. Jiang, W. Hu, Q. Zeng, "Improved gain characteristics of high concentration Erbium-doped phosphate fiber amplifier," IEEE Photon. Technol. Lett. 16, 774-776 (2004).

J. Nilsson, P. Scheer, B. Jaskorzynska, "Modeling and optimization of short Yb$^{3+}$-sensitized Er$^{3+}$-doped fiber amplifiers," IEEE Photon. Technol. Lett. 6, 383-385 (1994).

M. Federighi, F. Di Pasquale, "The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er$^{3+}$/Yb$^{3+}$ concentrations," IEEE Photon. Technol. Lett. 7, 303-305 (1995).

J. Alloys Compounds (1)

S. Ono, S. Tanabe, "Evaluation of quenching effect on gain characteristics in silica-based erbium doped fiber using numerical simulation," J. Alloys Compounds 408–412, 732-736 (2006).

J. Amer. Ceram. Soc. (1)

S. Shen, A. Jha, X. Liu, M. Naftaiy, K. S. Bindra, H. T. Bookey, K. K. Kar, "Tellurite glasses for broadband amplifiers and integrated optics," J. Amer. Ceram. Soc. 85, 1391-1395 (2002).

J. Lightw. Technol. (7)

E. Desurvire, J. R. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).

F. Di Pasquale, M. Federighi, "Modeling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides," J. Lightw. Technol. 13, 1858-1864 (1995).

P. Myslinski, D. Nguen, J. Chrostowski, "Effects of concentration on the performance of erbium-doped fiber amplifiers," J. Lightw. Technol. 15, 112-120 (1997).

H. Masuda, A. Takada, K. Aida, "Modeling the gain degradation of high concentration erbium-doped fiber amplifiers by introducing inhomogeneous up-conversion," J. Lightw. Technol. 10, 1789-1799 (1992).

C. Berkdemir, S. Özsoy, "On the temperature-dependent gain and noise figure analysis of C-band high-concentration EDFAs with the effect of cooperative upconversion," J. Lightw. Technol. 27, 1122-1127 (2009).

C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

E. Desurvire, J. R. Simpson, "Amplified spontaneous emission in Erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).

J. Non-Crystalline Solids (2)

S. Marjanovic, J. Toulousea, H. Jaina, C. Sandmanna, V. Dierolfa, A. R. Kortanb, N. Kopylovb, R. G. Ahrens, "Characterization of new erbium-doped tellurite glasses and fibers," J. Non-Crystalline Solids 322, 311-318 (2003).

S. Jiang, M. Myers, N. Peyghambarian, "Er$^{3+}$ doped phosphate glasses and lasers," J. Non-Crystalline Solids 239, 143-148 (1998).

J. Opt. Soc. Amer. B, Opt. Phys. (1)

Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, J. H. Kim, H. J. Seo, N. Peyghambarian, "Numerical analysis of the population dynamics and determination of the upconversion coefficients in a new erbium doped tellurite glass," J. Opt. Soc. Amer. B, Opt. Phys. 18, 1928-1934 (2001).

Microw. Opt. Technol. Lett. (1)

P. Myslinski, J. Chrostowski, "Gaussian mode radius polynomials for modelling doped fiber amplifiers and lasers," Microw. Opt. Technol. Lett. 11, 61-64 (1996).

Opt. Amplifiers Their Appl. Tech. Dig. (1)

J. Nilsson, B. Jaskorzynska, P. Blixt, "Implications of pair-induced quenching for erbium-doped fiber amplifiers," Opt. Amplifiers Their Appl. Tech. Dig. MD19-1, 222-225 (1993).

Opt. Commun. (2)

C. Berkdemir, S. Özsoy, "An investigation on the temperature dependence of the relative population inversion and the gain in EDFAs by the modified rate equations," Opt. Commun. 254, 248-255 (2005).

J. Li, K. Duan, Y. Wang, W. Zhao, Y. Guo, X. Lin, "Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters," Opt. Commun. 277, 143-149 (2007).

Opt. Express (1)

Opt. Laser Technol. (1)

C. Jiang, Q. Zen, "Optimization of erbium-doped waveguide amplifier," Opt. Laser Technol. 36, 167-171 (2004).

Opt. Mater. (2)

K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, T. Teshima, "Influence of Yb$^{3+}$ and Ce$^{3+}$ codoping on fluorescence characteristics of Er$^{3+}$-doped fluoride glass under 980 nm excitation," Opt. Mater. 27, 337-342 (2004).

C. Berkdemir, S. Özsoy, "Numerical analysis of the signal gain and noise figure of Yb$^{3+}$-sensitized Er$^{3+}$-doped fiber amplifiers at different pumping power configurations," Opt. Mater. 31, 229-232 (2008).

Opt. Soc. Amer. B (1)

B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er$^{3+}$- and Yb$^{3+}$-Er$^{3+}$-doped phosphate glasses," Opt. Soc. Amer. B 17, 833-839 (2000).

Other (2)

S. Jiang, B. C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Net gain of 15.5 dB from a 5.1 cm long Er-doped phosphate glass fiber," Tech. Dig. Opt. Fiber Commun. Conf. (2000).

E. Desurvire, Erbium-Doped Fiber Amplifiers; Principle and Applications (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.