Abstract

We propose a self-alignment process of an optical device with an optical multimode fiber (MMF) and a novel optical subassembly using a pre-self-aligned device. In order to form the pre-self-aligned device, the optical device such as a vertical-cavity surface-emitting laser (VCSEL) is aligned with the MMF using the surface tension of a transparent liquid adhesive. The optical subassembly we have developed is provided with a simple structure consisting of the pre-self-aligned VCSEL and an interposer board to be mounted on a printed circuit board (PCB). Details of the low-cost self-alignment technology and the optical subassembly are reported. Alignment accuracy of average 13 $\mu{\hbox {m}}$ is achieved and coupling efficiency of the self-aligned VCSEL to the MMF is determined to be maximum 35%. 1-Gb/s optical signal transmission using the optical subassembly is also demonstrated. This self-alignment technology and the fabricated optical subassembly are effective in achieving low-cost optical modules for optical interconnect systems from commodities to high-end applications.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription