Abstract

A novel approach for generating high-frequency microwave signals is proposed and experimentally demonstrated. With a pair of wavelength matched fiber Bragg gratings written directly in a polarization-maintaining erbium-doped fiber, a stable short cavity dual-wavelength single-longitudinal-mode (DW-SLM) distributed-Bragg-reflector fiber laser with orthogonal oscillation modes is realized at room temperature. The wavelength spacing between the two lasing modes is 0.374 nm. By heterodyning the two wavelengths of the DW-SLM fiber laser at a photodetector, microwave signal at over 46 GHz is achieved.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription