Abstract

A novel approach for generating high-frequency microwave signals is proposed and experimentally demonstrated. With a pair of wavelength matched fiber Bragg gratings written directly in a polarization-maintaining erbium-doped fiber, a stable short cavity dual-wavelength single-longitudinal-mode (DW-SLM) distributed-Bragg-reflector fiber laser with orthogonal oscillation modes is realized at room temperature. The wavelength spacing between the two lasing modes is 0.374 nm. By heterodyning the two wavelengths of the DW-SLM fiber laser at a photodetector, microwave signal at over 46 GHz is achieved.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
  2. J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
  3. R. C. Williamson, "RF Photonics," J. Lightw. Technol. 26, 1145-1153 (2008).
  4. P. O. Hedekvist, B. E. Olsson, A. Wiberg, "Microwave harmonic frequency generation utilizing the properties of an optical phase modulator," J. Lightw. Technol. 22, 882-886 (2004).
  5. S. Baunel, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, "Optical microwave source," Electron. Lett. 38, 334-335 (2002).
  6. J. Genest, M. Chamberland, P. Tremblay, M. Tetu, "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quant. Electron. 33, 989-998 (1997).
  7. Z. Fan, M. Dagenais, "Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE Trans. Microw. Theory Tech. 45, 1296-1300 (1997).
  8. X. Chen, J. Yao, Z. Deng, "Ultra-narrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser," Opt. Lett. 30, 2068-2070 (2005).
  9. X. Chen, Z. Deng, J. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006).
  10. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, "Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).
  11. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
  12. G. A. Ball, W. H. Glenn, W. W. Morey, P. K. Chan, "Modeling of short, single frequency, fiber lasers in high-gain fiber," IEEE Photon. Technol. Lett. 5, 649-651 (1993).
  13. J. Sun, J. Qiu, D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 182, 193-197 (2000).
  14. J. J. Zayhowski, "Limits imposed by spatial hole burning on the singlemode operation of standing-wave laser cavities," Opt. Lett. 15, 431-433 (1990).
  15. J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrowlinewidth millimetrewave signals," Electron. Lett. 28, 2309-2310 (1992).
  16. J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, S. Z. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).

2008 (3)

R. C. Williamson, "RF Photonics," J. Lightw. Technol. 26, 1145-1153 (2008).

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, "Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).

2007 (1)

J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).

2006 (3)

A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).

X. Chen, Z. Deng, J. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006).

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, S. Z. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).

2005 (1)

2004 (1)

P. O. Hedekvist, B. E. Olsson, A. Wiberg, "Microwave harmonic frequency generation utilizing the properties of an optical phase modulator," J. Lightw. Technol. 22, 882-886 (2004).

2002 (1)

S. Baunel, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, "Optical microwave source," Electron. Lett. 38, 334-335 (2002).

2000 (1)

J. Sun, J. Qiu, D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 182, 193-197 (2000).

1997 (2)

J. Genest, M. Chamberland, P. Tremblay, M. Tetu, "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quant. Electron. 33, 989-998 (1997).

Z. Fan, M. Dagenais, "Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE Trans. Microw. Theory Tech. 45, 1296-1300 (1997).

1993 (1)

G. A. Ball, W. H. Glenn, W. W. Morey, P. K. Chan, "Modeling of short, single frequency, fiber lasers in high-gain fiber," IEEE Photon. Technol. Lett. 5, 649-651 (1993).

1992 (1)

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrowlinewidth millimetrewave signals," Electron. Lett. 28, 2309-2310 (1992).

1990 (1)

Appl. Phys. B (1)

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).

Electron. Lett. (2)

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrowlinewidth millimetrewave signals," Electron. Lett. 28, 2309-2310 (1992).

S. Baunel, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, "Optical microwave source," Electron. Lett. 38, 334-335 (2002).

IEEE J. Quant. Electron. (1)

J. Genest, M. Chamberland, P. Tremblay, M. Tetu, "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quant. Electron. 33, 989-998 (1997).

IEEE Trans. Microw. Theory Tech. (1)

X. Chen, Z. Deng, J. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006).

IEEE Photon. Technol. Lett. (1)

G. A. Ball, W. H. Glenn, W. W. Morey, P. K. Chan, "Modeling of short, single frequency, fiber lasers in high-gain fiber," IEEE Photon. Technol. Lett. 5, 649-651 (1993).

IEEE Photon. Technol. Lett. (1)

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, S. Z. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).

IEEE Photon. Technol. Lett. (1)

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, J. Zhang, "Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon," IEEE Photon. Technol. Lett. 20, 976-978 (2008).

IEEE Trans. Microw. Theory Tech. (1)

Z. Fan, M. Dagenais, "Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE Trans. Microw. Theory Tech. 45, 1296-1300 (1997).

J. Lightw. Technol. (3)

A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).

R. C. Williamson, "RF Photonics," J. Lightw. Technol. 26, 1145-1153 (2008).

P. O. Hedekvist, B. E. Olsson, A. Wiberg, "Microwave harmonic frequency generation utilizing the properties of an optical phase modulator," J. Lightw. Technol. 22, 882-886 (2004).

Nature Photon. (1)

J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).

Opt. Commun. (1)

J. Sun, J. Qiu, D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 182, 193-197 (2000).

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.