Abstract

We study the error performance of an heterodyne differential phase-shift keying (DPSK) optical wireless (OW) communication system operating under various intensity fluctuations conditions. Specifically, it is assumed that the propagating signal suffers from the combined effects of atmospheric turbulence-induced fading, misalignment fading (i.e., pointing errors) and path-loss. Novel closed-form expressions for the statistics of the random attenuation of the propagation channel are derived and the bit-error rate (BER) performance is investigated for all the above fading effects. Numerical results are provided to evaluate the error performance of OW systems with the presence of atmospheric turbulence and/or misalignment. Moreover, nonlinear optimization is also considered to find the optimum beamwidth that achieves the minimum BER for a given signal-to-noise ratio value.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription