Abstract

A time-domain standing-wave model is proposed and developed to analyze the gain-coupled DFB laser. In this model, the optical field is decomposed into a set of eigenmodes, which are longitudinal cavity modes obtained when the laser is biased near threshold, i.e., threshold “hot-”cavity modes. As such, the spatial and temporal dependence of the optical field is separated with optical modes describing the spatial dependence and their amplitudes governing the temporal evolution of the field. Important effects such as the variation of the coupling coefficient with the injection level and the spatial hole burning can all be taken into account.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Kogelnik, C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
  2. E. Kapon, A. Hardy, A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. QE-18, 66-71 (1982).
  3. K. David, G. Morthier, P. Vankwikelberge, R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
  4. K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: A comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1719 (1991).
  5. Y. Nakano, Y. Luo, K. Tada, "Facet reflection independent single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).
  6. B.-S. Kim, Y. Chung, J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron 36, 787-794 (2000).
  7. L. M. Zhang, J. E. Carroll, "Enhanced AM and FM modulation response of complex coupled DFB lasers," IEEE Photon. Technol. Lett. PTL-5, 506-508 (1993).
  8. L. M. Zhang, J. E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser," IEEE J. Quantum Electron 29, 1722-1727 (1993).
  9. J. Carroll, J. Whiteaway, D. Plumb, Distributed Feedback Semiconductor Lasers (Inst. Electr. Eng. Press, 1998).
  10. L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, "Dynamic analysis of radiation and side mode suppression in second order DFB lasers using time-domain large signal traveling wave model," IEEE J. Quantum Electron 30, 1389-1395 (1994).
  11. Y. Xi, X. Li, W. -P. Huang, "Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers," IEEE J. Quantum Electron. 44, 931-937 (2008).
  12. G. P. Agrawal, N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, 1993).
  13. J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Amer. A 1, 742-753 (1984).
  14. M. Yamada, K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt. 26, 3474-3478 (1987).
  15. A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989).
  16. W. A. Hamel, J. P. Woerdman, "Nonorthogonality of the longitudinal eigenmodes of a laser," Phys. Rev. A 40, 2785-2787 (1989).
  17. K. David, J. Buus, G. Mothier, R. Baets, "Coupling coefficients in gain-coupled DFB lasers: Inherent compromise between coupling strength and loss," IEEE Photon. Technol. Lett. 4, 439-441 (1991).
  18. Y. Luo, Y. Nakano, K. Tada, "Purely gain-coupled distributed feedback semiconductor lasers," Appl. Phys. Lett. 56, 1620-1622 (1990).
  19. L. Olofsson, T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron 28, 1450-1458 (1992).
  20. A. J. Lowery, D. Novak, "Enhanced maximum intrinsic modulation bandwidth of complex-coupled DFB semiconductor lasers," Electron. Lett. 29, 461-463 (1993).
  21. K. Kudo, J. I. Shim, K. Komori, S. Arai, "Reduction of effective linewidth enhancement factor $\alpha_{eff}$ of DFB lasers with complex coupling coefficients," IEEE Photon. Technol. Lett. 4, 531-534 (1992).
  22. X. Pan, B. Tromborg, H. Olesen, H. E. Lassen, "Effective linewidth enhancement factor and spontaneous emission rate of DFB lasers with gain coupling," IEEE Photon. Technol. Lett. 4, 1213-1215 (1992).

2008 (1)

Y. Xi, X. Li, W. -P. Huang, "Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers," IEEE J. Quantum Electron. 44, 931-937 (2008).

2000 (1)

B.-S. Kim, Y. Chung, J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron 36, 787-794 (2000).

1994 (1)

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, "Dynamic analysis of radiation and side mode suppression in second order DFB lasers using time-domain large signal traveling wave model," IEEE J. Quantum Electron 30, 1389-1395 (1994).

1993 (3)

L. M. Zhang, J. E. Carroll, "Enhanced AM and FM modulation response of complex coupled DFB lasers," IEEE Photon. Technol. Lett. PTL-5, 506-508 (1993).

L. M. Zhang, J. E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser," IEEE J. Quantum Electron 29, 1722-1727 (1993).

A. J. Lowery, D. Novak, "Enhanced maximum intrinsic modulation bandwidth of complex-coupled DFB semiconductor lasers," Electron. Lett. 29, 461-463 (1993).

1992 (3)

K. Kudo, J. I. Shim, K. Komori, S. Arai, "Reduction of effective linewidth enhancement factor $\alpha_{eff}$ of DFB lasers with complex coupling coefficients," IEEE Photon. Technol. Lett. 4, 531-534 (1992).

X. Pan, B. Tromborg, H. Olesen, H. E. Lassen, "Effective linewidth enhancement factor and spontaneous emission rate of DFB lasers with gain coupling," IEEE Photon. Technol. Lett. 4, 1213-1215 (1992).

L. Olofsson, T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron 28, 1450-1458 (1992).

1991 (2)

K. David, J. Buus, G. Mothier, R. Baets, "Coupling coefficients in gain-coupled DFB lasers: Inherent compromise between coupling strength and loss," IEEE Photon. Technol. Lett. 4, 439-441 (1991).

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: A comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1719 (1991).

1990 (2)

K. David, G. Morthier, P. Vankwikelberge, R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).

Y. Luo, Y. Nakano, K. Tada, "Purely gain-coupled distributed feedback semiconductor lasers," Appl. Phys. Lett. 56, 1620-1622 (1990).

1989 (3)

A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989).

W. A. Hamel, J. P. Woerdman, "Nonorthogonality of the longitudinal eigenmodes of a laser," Phys. Rev. A 40, 2785-2787 (1989).

Y. Nakano, Y. Luo, K. Tada, "Facet reflection independent single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).

1987 (1)

1984 (1)

J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Amer. A 1, 742-753 (1984).

1982 (1)

E. Kapon, A. Hardy, A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. QE-18, 66-71 (1982).

1972 (1)

H. Kogelnik, C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Luo, Y. Nakano, K. Tada, "Purely gain-coupled distributed feedback semiconductor lasers," Appl. Phys. Lett. 56, 1620-1622 (1990).

Y. Nakano, Y. Luo, K. Tada, "Facet reflection independent single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).

Electron. Lett. (2)

K. David, G. Morthier, P. Vankwikelberge, R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).

A. J. Lowery, D. Novak, "Enhanced maximum intrinsic modulation bandwidth of complex-coupled DFB semiconductor lasers," Electron. Lett. 29, 461-463 (1993).

IEEE J. Quantum Electron. (1)

Y. Xi, X. Li, W. -P. Huang, "Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers," IEEE J. Quantum Electron. 44, 931-937 (2008).

IEEE Photon. Technol. Lett. (2)

L. M. Zhang, J. E. Carroll, "Enhanced AM and FM modulation response of complex coupled DFB lasers," IEEE Photon. Technol. Lett. PTL-5, 506-508 (1993).

K. David, J. Buus, G. Mothier, R. Baets, "Coupling coefficients in gain-coupled DFB lasers: Inherent compromise between coupling strength and loss," IEEE Photon. Technol. Lett. 4, 439-441 (1991).

IEEE J. Quantum Electron (1)

B.-S. Kim, Y. Chung, J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron 36, 787-794 (2000).

IEEE J. Quantum Electron. (1)

E. Kapon, A. Hardy, A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. QE-18, 66-71 (1982).

IEEE J. Quantum Electron (3)

L. M. Zhang, J. E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser," IEEE J. Quantum Electron 29, 1722-1727 (1993).

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, "Dynamic analysis of radiation and side mode suppression in second order DFB lasers using time-domain large signal traveling wave model," IEEE J. Quantum Electron 30, 1389-1395 (1994).

L. Olofsson, T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron 28, 1450-1458 (1992).

IEEE J. Quantum Electron. (1)

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: A comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1719 (1991).

IEEE Photon. Technol. Lett. (2)

K. Kudo, J. I. Shim, K. Komori, S. Arai, "Reduction of effective linewidth enhancement factor $\alpha_{eff}$ of DFB lasers with complex coupling coefficients," IEEE Photon. Technol. Lett. 4, 531-534 (1992).

X. Pan, B. Tromborg, H. Olesen, H. E. Lassen, "Effective linewidth enhancement factor and spontaneous emission rate of DFB lasers with gain coupling," IEEE Photon. Technol. Lett. 4, 1213-1215 (1992).

J. Appl. Phys. (1)

H. Kogelnik, C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).

J. Opt. Soc. Amer. A (1)

J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Amer. A 1, 742-753 (1984).

Phys. Rev. A (2)

A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989).

W. A. Hamel, J. P. Woerdman, "Nonorthogonality of the longitudinal eigenmodes of a laser," Phys. Rev. A 40, 2785-2787 (1989).

Other (2)

G. P. Agrawal, N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, 1993).

J. Carroll, J. Whiteaway, D. Plumb, Distributed Feedback Semiconductor Lasers (Inst. Electr. Eng. Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.