Abstract

We describe our design and fabrication of a low-loss and compact 1.5%-$\Delta$ silica-based athermal arrayed waveguide grating (AWG) using a resin-filled groove. We present the theory of athermal AWG design and clarify the relationship between the AWG design parameters and the groove design required for realizing an athermal condition. We also describe approaches for reducing excess loss in the groove, which are used to optimize the groove and arrayed waveguide designs. We examine the performance of a 40-channel 100 GHz spacing athermal AWG module that employs all of the approaches. We successfully reduce the excess loss in the groove to 0.2 dB and achieve a compact chip size of $31\times 23\ {\hbox{mm}}^{2}$ as well as sufficient optical performance and temperature insensitivity for practical use. In addition, we confirm by calculation that our approaches for excess loss reduction are also effective for an athermal AWG with a channel spacing of less than 100 GHz.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription