Abstract

Coherent optical frequency-division multiplexing (CO-OFDM) is one of the promising pathways toward future ultrahigh capacity transparent optical networks. In this paper, numerical simulation is carried out to investigate the feasibility of 1 Tb/s per channel CO-OFDM transmission. We find that, for 1Tb/s CO-OFDM signal, the performance difference between single channel and wavelength division multiplexing (WDM) transmission is small. The maximum Q is 13.8 and 13.2 dB respectively for single channel and WDM transmission. We also investigate the CO-OFDM performance on the upgrade of 10-Gb/s to 100-Gb/s based DWDM systems with 50-GHz channel spacing to 100-Gb/s systems. It is shown that due to the high spectral efficiency and resilience to dispersion, for 100-Gb/s CO-OFDM signals, only 1.3dB Q penalty is observed for 10 GHz laser frequency detuning. A comparison of CO-OFDM system performance under different data rate of 10.7 Gb/s, 42.8 Gb/s, 107 Gb/s and 1.07 Tb/s with and without the impact of dispersion compensation fiber is also presented. We find that the optimum fiber launch power increases almost linearly with the increase of data rate. 7 dB optimum launch power difference is observed between 107 Gb/s and 1.07 Tb/s CO-OFDM systems.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription