Abstract

A simplified homodyne detection scheme for linear FM modulated lidar is presented in which pulse dechirping is performed in the optical domain. This method provides quantum limited detection sensitivity with much less receiver complexity compared to heterodyne detection systems. Another advantage of this approach is the reduced bandwidth requirement for the photodetector. This removes the limit on the chirp bandwidth, and enables the use of more efficient photodiodes with larger detector area. A field trial using a 5-in aperture diameter commercial telescope and a 370-m target range verified the sensitivity estimation and demonstrated the feasibility of this technique.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. Allen, Y. Cobanoglu, S. K. Chong, S. Gogineni, "Performance of a 1319 nm laser radar using RF pulse compression," Proc. 2001 Int. Geosci. Remote Sens. Symp. (IGARSS '01) (2001) pp. 997-999.
  2. D. F. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, M. Rubio, "Linear FMCW laser radar for precision range and vector velocity measurements," Proc. Mater. Res. Soc. Symp. (2008).
  3. G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).
  4. P. Gatt, S. W. Henderson, "Laser radar detection statistics: A comparison of coherent and direct detection receivers," Proc. SPIE (2001) pp. 251-262.
  5. A. Yariv, Optical Electronics (Holt, Rinehart and Winston, 1985) pp. 362-375.
  6. R. Epworth, J. Whiteaway, S. J. Savory, 3 Fibre I and Q Coupler U.S. patent 6,859,586 (2005).
  7. K. Yonenaga, S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," IEEE J. Lightw. Technol. 15, 1530-1537 (1997).
  8. M. Schwartz, W. R. Bennett, S. Stein, Communication Systems and Techniques (IEEE Press, 1996).

1997 (1)

K. Yonenaga, S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," IEEE J. Lightw. Technol. 15, 1530-1537 (1997).

IEEE J. Lightw. Technol. (1)

K. Yonenaga, S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," IEEE J. Lightw. Technol. 15, 1530-1537 (1997).

Other (7)

M. Schwartz, W. R. Bennett, S. Stein, Communication Systems and Techniques (IEEE Press, 1996).

C. Allen, Y. Cobanoglu, S. K. Chong, S. Gogineni, "Performance of a 1319 nm laser radar using RF pulse compression," Proc. 2001 Int. Geosci. Remote Sens. Symp. (IGARSS '01) (2001) pp. 997-999.

D. F. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, M. Rubio, "Linear FMCW laser radar for precision range and vector velocity measurements," Proc. Mater. Res. Soc. Symp. (2008).

G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).

P. Gatt, S. W. Henderson, "Laser radar detection statistics: A comparison of coherent and direct detection receivers," Proc. SPIE (2001) pp. 251-262.

A. Yariv, Optical Electronics (Holt, Rinehart and Winston, 1985) pp. 362-375.

R. Epworth, J. Whiteaway, S. J. Savory, 3 Fibre I and Q Coupler U.S. patent 6,859,586 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.