Abstract

Calculations based on a rigorous analytical model are carried out to optimize the width of the indium phosphide avalanche region in high-speed direct-detection avalanche photodiode-based optical receivers. The model includes the effects of intersymbol interference (ISI), tunneling current, avalanche noise, and its correlation with the stochastic avalanche duration, as well as dead space. A minimum receiver sensitivity of $-$28 dBm is predicted at an optimal width of 0.18 $\mu{\hbox {m}}$ and an optimal gain of approximately 13, for a 10 Gb/s communication system, assuming a Johnson noise level of 629 noise electrons per bit. The interplay among the factors controlling the optimum sensitivity is confirmed. Results show that for a given transmission speed, as the device width decreases below an optimum value, increased tunneling current outweighs avalanche noise reduction due to dead space, resulting in an increase in receiver sensitivity. As the device width increases above its optimum value, the receiver sensitivity increases as device bandwidth decreases, causing ISI to dominate avalanche noise and tunneling current shot noise.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Y. Guo, S. L. Wang, X. G. Zheng, X. W. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, N. Tscherptner, "Recent advances in avalanche photodiodes," IEEE J. Sel. Topics Quantum Electron. 10, 777-787 (2004).
  2. S. D. Personick, "Receiver design for digital fiber-optic communication systems, Parts I and II," Bell Syst. Tech. J. 52, 843-886 (1973).
  3. K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, R. Grey, "Avalanche multiplication noise characteristics in thin GaAs ${\rm p}^{+}-{\rm i-n}^{+}$ diodes," IEEE Trans. Electron Devices 45, 2102-2107 (1998).
  4. M. A. Saleh, M. M. Hayat, P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A. Saleh, M. C. Teich, "Impact-ionization and noise characteristics of thin III-V avalanche photodiodes," IEEE Trans. Electron Devices 48, 2722-2731 (2001).
  5. C. H. Tan, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, R. Grey, "Low multiplication noise thin ${\hbox {Al}}_{0.6}{\hbox {Ga}}_{0.4}{\hbox {As}}$ avalanche photodiodes," IEEE Trans. Electron Devices 48, 1310-1317 (2001).
  6. S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, "Evidence of tunneling in reverse-bias III-V photodetector diodes," Appl. Phys. Lett. 36, 580-582 (1980).
  7. M. M. Hayat, B. E. A. Saleh, J. A. Gubner, "Bit-error rates for optical receivers using avalanche photodiodes with dead space," IEEE Trans. Commun. 43, 99-107 (1995).
  8. C. Groves, J. David, "Effects of ionization velocity and dead space on avalanche photodiode bit error rate," IEEE Trans. Commun. 55, 2152-2158 (2007).
  9. P. Sun, M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Statistical correlation of gain and buildup time in APD and its effects on receiver performance," J. Lightw. Technol. 24, 755-768 (2006).
  10. P. Sun, M. M. Hayat, A. K. Das, "Bit error rates for ultrafast APD based optical receivers: Exact and large deviation based asymptotic approaches," IEEE Trans. Commun. .
  11. K. B. Letaief, J. S. Sadowsky, "Computing bit-error probabilities for avalanche photodiode receivers by large deviations theory," IEEE Trans. Inf. Theory 38, 1162-1169 (1992).
  12. B. Choi, M. M. Hayat, "Computation of bit-error probabilities for optical receivers using thin avalanche photodiodes," IEEE Comm. Lett. 10, 56-58 (2006).
  13. L. J. J. Tan, J. S. Ng, C. H. Tan, J. P. R. David, "Avalanche noise characteristics in sub-micron InP diodes," IEEE J. Quantum Electron. 44, 378-382 (2008).
  14. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997) pp. 172.
  15. S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, "${\rm In}_{0.53}{\hbox {Ga}}_{0.47}{\hbox {As}}$ photodiodes with dark current limited by generation-recombination and tunnelling," Appl. Phys. Lett. 37, 322-325 (1980).
  16. J. S. Ng, C. H. Tan, B. K. Ng, P. J. Hambleton, J. P. R. David, G. J. Rees, A. H. You, D. S. Ong, "Effect of dead space on avalanche speed," IEEE Trans. Electron Devices 49, 544-549 (2002).
  17. A. Maxim, "A $54\ {\hbox {dB}}\Omega+42\ {\hbox {dB}}$ 10 Gb/s SiGe transimpedance-limiting amplifier using bootstrap photodiode capacitance neutralization and vertical threshold adjustment," IEEE J. Solid-State Circuits 42, 1851-1864 (2007).
  18. C.-F. Liao, S.-I. Liu, "40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS," IEEE J. Solid-State Circuits 43, 642-655 (2008).
  19. H. Fukuyama, K. Sano, K. Murata, H. Kitabayashi, Y. Yamane, T. Enoki, H. Sugahara, "Photoreceiver module using an InP HEMT transimpedance amplifier for over 40 Gb/s," IEEE J. Solid-State Circuits 39, 1690-1696 (2004).
  20. J.-D. Jin, S. S. H. Hsu, "A 40-Gb/s transimpedance amplifier in 0.18- $\mu{\hbox {m}}$ CMOS technology," IEEE J. Solid-State Circuits 43, 1449-1457 (2008).
  21. J. S. Weiner, J. S. Lee, A. Leven, Y. Baeyens, V. Houtsma, G. Georgiou, Y. Yang, J. Frackoviak, A. Tate, R. Reyes, R. F. Kopf, W.-J. Sung, N. G. Weimann, Y.-K. Chen, "An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth," IEEE J. Solid-State Circuits 39, 1720-1723 (2004).
  22. L. W. Cook, G. E. Bulman, G. E. Stillman, "Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements," Appl. Phys. Lett. 40, 589-591 (1982).

2008 (3)

L. J. J. Tan, J. S. Ng, C. H. Tan, J. P. R. David, "Avalanche noise characteristics in sub-micron InP diodes," IEEE J. Quantum Electron. 44, 378-382 (2008).

C.-F. Liao, S.-I. Liu, "40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS," IEEE J. Solid-State Circuits 43, 642-655 (2008).

J.-D. Jin, S. S. H. Hsu, "A 40-Gb/s transimpedance amplifier in 0.18- $\mu{\hbox {m}}$ CMOS technology," IEEE J. Solid-State Circuits 43, 1449-1457 (2008).

2007 (2)

C. Groves, J. David, "Effects of ionization velocity and dead space on avalanche photodiode bit error rate," IEEE Trans. Commun. 55, 2152-2158 (2007).

A. Maxim, "A $54\ {\hbox {dB}}\Omega+42\ {\hbox {dB}}$ 10 Gb/s SiGe transimpedance-limiting amplifier using bootstrap photodiode capacitance neutralization and vertical threshold adjustment," IEEE J. Solid-State Circuits 42, 1851-1864 (2007).

2006 (2)

P. Sun, M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Statistical correlation of gain and buildup time in APD and its effects on receiver performance," J. Lightw. Technol. 24, 755-768 (2006).

B. Choi, M. M. Hayat, "Computation of bit-error probabilities for optical receivers using thin avalanche photodiodes," IEEE Comm. Lett. 10, 56-58 (2006).

2004 (3)

J. S. Weiner, J. S. Lee, A. Leven, Y. Baeyens, V. Houtsma, G. Georgiou, Y. Yang, J. Frackoviak, A. Tate, R. Reyes, R. F. Kopf, W.-J. Sung, N. G. Weimann, Y.-K. Chen, "An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth," IEEE J. Solid-State Circuits 39, 1720-1723 (2004).

H. Fukuyama, K. Sano, K. Murata, H. Kitabayashi, Y. Yamane, T. Enoki, H. Sugahara, "Photoreceiver module using an InP HEMT transimpedance amplifier for over 40 Gb/s," IEEE J. Solid-State Circuits 39, 1690-1696 (2004).

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Y. Guo, S. L. Wang, X. G. Zheng, X. W. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, N. Tscherptner, "Recent advances in avalanche photodiodes," IEEE J. Sel. Topics Quantum Electron. 10, 777-787 (2004).

2002 (1)

J. S. Ng, C. H. Tan, B. K. Ng, P. J. Hambleton, J. P. R. David, G. J. Rees, A. H. You, D. S. Ong, "Effect of dead space on avalanche speed," IEEE Trans. Electron Devices 49, 544-549 (2002).

2001 (2)

M. A. Saleh, M. M. Hayat, P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A. Saleh, M. C. Teich, "Impact-ionization and noise characteristics of thin III-V avalanche photodiodes," IEEE Trans. Electron Devices 48, 2722-2731 (2001).

C. H. Tan, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, R. Grey, "Low multiplication noise thin ${\hbox {Al}}_{0.6}{\hbox {Ga}}_{0.4}{\hbox {As}}$ avalanche photodiodes," IEEE Trans. Electron Devices 48, 1310-1317 (2001).

1998 (1)

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, R. Grey, "Avalanche multiplication noise characteristics in thin GaAs ${\rm p}^{+}-{\rm i-n}^{+}$ diodes," IEEE Trans. Electron Devices 45, 2102-2107 (1998).

1995 (1)

M. M. Hayat, B. E. A. Saleh, J. A. Gubner, "Bit-error rates for optical receivers using avalanche photodiodes with dead space," IEEE Trans. Commun. 43, 99-107 (1995).

1992 (1)

K. B. Letaief, J. S. Sadowsky, "Computing bit-error probabilities for avalanche photodiode receivers by large deviations theory," IEEE Trans. Inf. Theory 38, 1162-1169 (1992).

1982 (1)

L. W. Cook, G. E. Bulman, G. E. Stillman, "Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements," Appl. Phys. Lett. 40, 589-591 (1982).

1980 (2)

S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, "${\rm In}_{0.53}{\hbox {Ga}}_{0.47}{\hbox {As}}$ photodiodes with dark current limited by generation-recombination and tunnelling," Appl. Phys. Lett. 37, 322-325 (1980).

S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, "Evidence of tunneling in reverse-bias III-V photodetector diodes," Appl. Phys. Lett. 36, 580-582 (1980).

1973 (1)

S. D. Personick, "Receiver design for digital fiber-optic communication systems, Parts I and II," Bell Syst. Tech. J. 52, 843-886 (1973).

Appl. Phys. Lett. (3)

S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, "Evidence of tunneling in reverse-bias III-V photodetector diodes," Appl. Phys. Lett. 36, 580-582 (1980).

S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, "${\rm In}_{0.53}{\hbox {Ga}}_{0.47}{\hbox {As}}$ photodiodes with dark current limited by generation-recombination and tunnelling," Appl. Phys. Lett. 37, 322-325 (1980).

L. W. Cook, G. E. Bulman, G. E. Stillman, "Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements," Appl. Phys. Lett. 40, 589-591 (1982).

Bell Syst. Tech. J. (1)

S. D. Personick, "Receiver design for digital fiber-optic communication systems, Parts I and II," Bell Syst. Tech. J. 52, 843-886 (1973).

IEEE Comm. Lett. (1)

B. Choi, M. M. Hayat, "Computation of bit-error probabilities for optical receivers using thin avalanche photodiodes," IEEE Comm. Lett. 10, 56-58 (2006).

IEEE J. Quantum Electron. (1)

L. J. J. Tan, J. S. Ng, C. H. Tan, J. P. R. David, "Avalanche noise characteristics in sub-micron InP diodes," IEEE J. Quantum Electron. 44, 378-382 (2008).

IEEE J. Sel. Topics Quantum Electron. (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Y. Guo, S. L. Wang, X. G. Zheng, X. W. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, N. Tscherptner, "Recent advances in avalanche photodiodes," IEEE J. Sel. Topics Quantum Electron. 10, 777-787 (2004).

IEEE J. Solid-State Circuits (5)

A. Maxim, "A $54\ {\hbox {dB}}\Omega+42\ {\hbox {dB}}$ 10 Gb/s SiGe transimpedance-limiting amplifier using bootstrap photodiode capacitance neutralization and vertical threshold adjustment," IEEE J. Solid-State Circuits 42, 1851-1864 (2007).

C.-F. Liao, S.-I. Liu, "40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS," IEEE J. Solid-State Circuits 43, 642-655 (2008).

H. Fukuyama, K. Sano, K. Murata, H. Kitabayashi, Y. Yamane, T. Enoki, H. Sugahara, "Photoreceiver module using an InP HEMT transimpedance amplifier for over 40 Gb/s," IEEE J. Solid-State Circuits 39, 1690-1696 (2004).

J.-D. Jin, S. S. H. Hsu, "A 40-Gb/s transimpedance amplifier in 0.18- $\mu{\hbox {m}}$ CMOS technology," IEEE J. Solid-State Circuits 43, 1449-1457 (2008).

J. S. Weiner, J. S. Lee, A. Leven, Y. Baeyens, V. Houtsma, G. Georgiou, Y. Yang, J. Frackoviak, A. Tate, R. Reyes, R. F. Kopf, W.-J. Sung, N. G. Weimann, Y.-K. Chen, "An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth," IEEE J. Solid-State Circuits 39, 1720-1723 (2004).

IEEE Trans. Commun. (3)

P. Sun, M. M. Hayat, A. K. Das, "Bit error rates for ultrafast APD based optical receivers: Exact and large deviation based asymptotic approaches," IEEE Trans. Commun. .

M. M. Hayat, B. E. A. Saleh, J. A. Gubner, "Bit-error rates for optical receivers using avalanche photodiodes with dead space," IEEE Trans. Commun. 43, 99-107 (1995).

C. Groves, J. David, "Effects of ionization velocity and dead space on avalanche photodiode bit error rate," IEEE Trans. Commun. 55, 2152-2158 (2007).

IEEE Trans. Electron Devices (4)

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, R. Grey, "Avalanche multiplication noise characteristics in thin GaAs ${\rm p}^{+}-{\rm i-n}^{+}$ diodes," IEEE Trans. Electron Devices 45, 2102-2107 (1998).

M. A. Saleh, M. M. Hayat, P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A. Saleh, M. C. Teich, "Impact-ionization and noise characteristics of thin III-V avalanche photodiodes," IEEE Trans. Electron Devices 48, 2722-2731 (2001).

C. H. Tan, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, R. Grey, "Low multiplication noise thin ${\hbox {Al}}_{0.6}{\hbox {Ga}}_{0.4}{\hbox {As}}$ avalanche photodiodes," IEEE Trans. Electron Devices 48, 1310-1317 (2001).

J. S. Ng, C. H. Tan, B. K. Ng, P. J. Hambleton, J. P. R. David, G. J. Rees, A. H. You, D. S. Ong, "Effect of dead space on avalanche speed," IEEE Trans. Electron Devices 49, 544-549 (2002).

IEEE Trans. Inf. Theory (1)

K. B. Letaief, J. S. Sadowsky, "Computing bit-error probabilities for avalanche photodiode receivers by large deviations theory," IEEE Trans. Inf. Theory 38, 1162-1169 (1992).

J. Lightw. Technol. (1)

P. Sun, M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Statistical correlation of gain and buildup time in APD and its effects on receiver performance," J. Lightw. Technol. 24, 755-768 (2006).

Other (1)

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997) pp. 172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.