Abstract

The properties of highly nonlinear glasses for photonic devices and the advantages of processing these materials using femtosecond laser pulses are discussed in a brief review. A novel approach is proposed for the optimization of the modification process that takes into account the dispersion of the nonlinear coefficients of refraction and absorption. Numerical modeling of the pulse energy deposition into a sample of chalcogenide glass shows that the shapes and dimensions of the modified regions depend on the nonlinear coefficients.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription