Abstract

This paper describes an improved solution to the standing-wave model (SWM) based on cold cavity modes for simulating DFB laser diodes. It is found that the longitudinal carrier distribution has an opposite pattern from that of the photon distribution inside the laser cavity. An approximation to the carrier distribution is made under the moderate power assumption. This fact allows the integrals involved in the standing-wave formulation to be analytically performed beforehand and also leads to a great reduction to the number of carrier rate equations to be solved, consequently resulting in a more efficient solution to the previously proposed SWM.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Yamanaka, S. Seki, K. Yokoyama, "Numerical analysis of static wavelength shift for DFB lasers with longitudinal mode spatial hole burning," IEEE Photon. Technol. Lett. 3, 610-612 (1991).
  2. C. Y. Kuo, M. S. Lin, S. J. Wang, D. A. Ackerman, L. J. P. Ketelsen, "Static and dynamic characteristics of DFB lasers with longitudinal non-uniformity," IEEE Photon. Technol. Lett. 2, 461-463 (1990).
  3. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakosbi, H. Imai, "Stability in single longitudinal mode operation in GaInAsPhP phase adjusted DFB lasers," IEEE J. Quantum Electron. QE-23, 804-814 (1987).
  4. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, "The design and assessment of ${\lambda / 4}$ phase-shift DFB laser structure," IEEE J. Quantum Electron. 25, 1761-1779 (1989).
  5. L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, "Dynamic analysis of radiation and side mode suppression in second order DFB lasers using time-domain large signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
  6. A. J. Lowery, A. Keating, C. N. Murtonen, "Modeling the static and dynamic behavior of quarter-wave-shifted DFB lasers," IEEE J. Quantum Electron. 28, 1874-1883 (1992).
  7. W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: Design modeling and simulation," IEEE J. Quantum Electron. 36, 1110-1116 (2000).
  8. Y. Xi, W.-P. Huang, X. Li, "High-order split-step schemes for time-dependent coupled-wave equations," IEEE J. Quantum Electron. 43, 419-425 (2007).
  9. W.-P. Huang, X. Li, T. Makino, "Analytical formulas for modulation responses of semiconductor DFB lasers," IEEE J. Quantum Electron. 31, 842-851 (1995).
  10. X. Li, W.-P. Huang, "Simulation of DFB semiconductor lasers incorporating thermal effects," IEEE J. Quantum Electron. 31, 1846-1855 (1995).
  11. Y. Xi, X. Li, W.-P. Huang, "Time-domain standing-wave approach based on Cold Cavity Modes for Simulation of DFB Lasers," J. of IEEE Quantum Electron. 44, 931-937 (2008).
  12. R. S. Tucker, D. J. Pope, "Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser," IEEE J. Quantum Electron. QE-19, 1179-1183 (1983).
  13. J. Kinoshita, K. Matsumoto, "Transient chirping in distributed feedback lasers: Effect of spatial hole-burning along the laser axis," IEEE J. Quantum Electron. 24, 2160-2169 (1988).
  14. J. Kinoshita, "Modeling of high-speed DFB lasers considering the spatial holeburning effect using three rate equations," IEEE J. Quantum Electron. 30, 929-938 (1994).
  15. J. Carroll, J. Whiteaway, D. Plumb, Distributed Feedback Semiconductor Lasers (Inst. Electr. Eng. Press, 1998) pp. 130.
  16. J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Amer. A 1, 742-753 (1984).

2008 (1)

Y. Xi, X. Li, W.-P. Huang, "Time-domain standing-wave approach based on Cold Cavity Modes for Simulation of DFB Lasers," J. of IEEE Quantum Electron. 44, 931-937 (2008).

2007 (1)

Y. Xi, W.-P. Huang, X. Li, "High-order split-step schemes for time-dependent coupled-wave equations," IEEE J. Quantum Electron. 43, 419-425 (2007).

2000 (1)

W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: Design modeling and simulation," IEEE J. Quantum Electron. 36, 1110-1116 (2000).

1995 (2)

W.-P. Huang, X. Li, T. Makino, "Analytical formulas for modulation responses of semiconductor DFB lasers," IEEE J. Quantum Electron. 31, 842-851 (1995).

X. Li, W.-P. Huang, "Simulation of DFB semiconductor lasers incorporating thermal effects," IEEE J. Quantum Electron. 31, 1846-1855 (1995).

1994 (2)

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, "Dynamic analysis of radiation and side mode suppression in second order DFB lasers using time-domain large signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).

J. Kinoshita, "Modeling of high-speed DFB lasers considering the spatial holeburning effect using three rate equations," IEEE J. Quantum Electron. 30, 929-938 (1994).

1992 (1)

A. J. Lowery, A. Keating, C. N. Murtonen, "Modeling the static and dynamic behavior of quarter-wave-shifted DFB lasers," IEEE J. Quantum Electron. 28, 1874-1883 (1992).

1991 (1)

T. Yamanaka, S. Seki, K. Yokoyama, "Numerical analysis of static wavelength shift for DFB lasers with longitudinal mode spatial hole burning," IEEE Photon. Technol. Lett. 3, 610-612 (1991).

1990 (1)

C. Y. Kuo, M. S. Lin, S. J. Wang, D. A. Ackerman, L. J. P. Ketelsen, "Static and dynamic characteristics of DFB lasers with longitudinal non-uniformity," IEEE Photon. Technol. Lett. 2, 461-463 (1990).

1989 (1)

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, "The design and assessment of ${\lambda / 4}$ phase-shift DFB laser structure," IEEE J. Quantum Electron. 25, 1761-1779 (1989).

1988 (1)

J. Kinoshita, K. Matsumoto, "Transient chirping in distributed feedback lasers: Effect of spatial hole-burning along the laser axis," IEEE J. Quantum Electron. 24, 2160-2169 (1988).

1987 (1)

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakosbi, H. Imai, "Stability in single longitudinal mode operation in GaInAsPhP phase adjusted DFB lasers," IEEE J. Quantum Electron. QE-23, 804-814 (1987).

1984 (1)

J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Amer. A 1, 742-753 (1984).

1983 (1)

R. S. Tucker, D. J. Pope, "Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser," IEEE J. Quantum Electron. QE-19, 1179-1183 (1983).

IEEE J. Quantum Electron. (11)

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakosbi, H. Imai, "Stability in single longitudinal mode operation in GaInAsPhP phase adjusted DFB lasers," IEEE J. Quantum Electron. QE-23, 804-814 (1987).

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, "The design and assessment of ${\lambda / 4}$ phase-shift DFB laser structure," IEEE J. Quantum Electron. 25, 1761-1779 (1989).

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, "Dynamic analysis of radiation and side mode suppression in second order DFB lasers using time-domain large signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).

A. J. Lowery, A. Keating, C. N. Murtonen, "Modeling the static and dynamic behavior of quarter-wave-shifted DFB lasers," IEEE J. Quantum Electron. 28, 1874-1883 (1992).

W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: Design modeling and simulation," IEEE J. Quantum Electron. 36, 1110-1116 (2000).

Y. Xi, W.-P. Huang, X. Li, "High-order split-step schemes for time-dependent coupled-wave equations," IEEE J. Quantum Electron. 43, 419-425 (2007).

W.-P. Huang, X. Li, T. Makino, "Analytical formulas for modulation responses of semiconductor DFB lasers," IEEE J. Quantum Electron. 31, 842-851 (1995).

X. Li, W.-P. Huang, "Simulation of DFB semiconductor lasers incorporating thermal effects," IEEE J. Quantum Electron. 31, 1846-1855 (1995).

R. S. Tucker, D. J. Pope, "Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser," IEEE J. Quantum Electron. QE-19, 1179-1183 (1983).

J. Kinoshita, K. Matsumoto, "Transient chirping in distributed feedback lasers: Effect of spatial hole-burning along the laser axis," IEEE J. Quantum Electron. 24, 2160-2169 (1988).

J. Kinoshita, "Modeling of high-speed DFB lasers considering the spatial holeburning effect using three rate equations," IEEE J. Quantum Electron. 30, 929-938 (1994).

IEEE Photon. Technol. Lett. (2)

T. Yamanaka, S. Seki, K. Yokoyama, "Numerical analysis of static wavelength shift for DFB lasers with longitudinal mode spatial hole burning," IEEE Photon. Technol. Lett. 3, 610-612 (1991).

C. Y. Kuo, M. S. Lin, S. J. Wang, D. A. Ackerman, L. J. P. Ketelsen, "Static and dynamic characteristics of DFB lasers with longitudinal non-uniformity," IEEE Photon. Technol. Lett. 2, 461-463 (1990).

J. of IEEE Quantum Electron. (1)

Y. Xi, X. Li, W.-P. Huang, "Time-domain standing-wave approach based on Cold Cavity Modes for Simulation of DFB Lasers," J. of IEEE Quantum Electron. 44, 931-937 (2008).

J. Opt. Soc. Amer. A (1)

J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Amer. A 1, 742-753 (1984).

Other (1)

J. Carroll, J. Whiteaway, D. Plumb, Distributed Feedback Semiconductor Lasers (Inst. Electr. Eng. Press, 1998) pp. 130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.