Abstract

In order to determine the Verdet constant of an air-core photonic bandgap fiber (PBF), the birefringence of the fiber needs to be accurately known. We used two methods to measure the linear and circular birefringence of a commercial PBF around 1.5 $\mu{\hbox {m}}$. The linear birefringence beat length is found to vary significantly with wavelength, ranging from 6.8 $\pm$ 0.2 cm at 1526.8 nm to 9.5 $\pm$ 0.4 cm at 1596.8 nm. The circular birefringence is observed to be weaker by a factor of at least ten. The Verdet constant of this fiber, measured using a Faraday-effect measurement, is 6.1 $\pm$ 0.3 mrad/T/m. This value is in broad agreement with the prediction of a numerical model, and it confirms that the Verdet constant of this fiber is dominated by the residual spatial overlap of the mode with silica. It is also found to be 90 times weaker than the Verdet constant of a solid-core fiber (SMF-28) measured by the same process (0.55 $\pm$ 0.01 rad/T/m, in agreement with published values). This significantly reduced susceptibility to magnetic fields points to yet another benefit of air-core fibers in the fiber optic gyroscope.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. K. Hotate, K. Tabe, "Drift of an optical fiber gyroscope caused by the Faraday effect: Influence of the Earth's magnetic field," Appl. Opt. 25, 1086-1092 (1986).
  2. H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber gyroscope," J. Lighw. Technol. 24, 3169-3174 (2006).
  3. M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Expr. 13, 1457-1467 (2005).
  4. F. Poletti, N. G. Broderick, D. Richardson, T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Expr. 13, 9115-9124 (2005).
  5. G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russell, L. Farr, B. J. Mangan, H. Sabert, "Properties of hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Expr. 11, 1613-1620 (2003).
  6. T. Chartier, A. Hideur, C. Özkul, F. Sanchez, G. Stéphan, "Measurement of the elliptical birefringence of single-mode optical fibers," Appl. Opt. 40, 5343-5353 (2001).
  7. M. Terrel, M. J. F. Digonnet, S. Fan, "Polarization controller for hollow-core fiber," Opt. Lett. 32, 1524-1526 (2007).
  8. M. T. Steel, T. P. White, C. M. De Sterke, R. C. McPhedran, L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001).
  9. A. M. Smith, "Polarization and magneto-optic properties of single-mode optical fiber," Appl. Opt. 17, 52-56 (1978).
  10. J. L. Cruz, M. V. Andres, M. A. Hernandez, "Faraday effect in standard optical fibers: Dispersion of the effective Verdet constant," Appl. Opt. 35, 922-927 (1996).
  11. A. H. Rose, S. M. Etzel, C. M. Wang, "Verdet constant dispersion in annealed optical fiber current sensors," J. Lightw. Technol. 15, 803-807 (1997).
  12. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, R. La Naour, "The Malus Fabry–Perot interferometer," Appl. Phys. Lett. 66, 3546-3548 (1995).
  13. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, M. N. Deeter, "Temperature dependence of the Verdet constant in several diamagnetic glasses," Appl. Opt. 30, 1176-1178 (1991).
  14. G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, "Faraday rotation in coiled, monomode optical fibers: Isolators, filters, and magnetic sensors," Opt. Letters 7, 238-240 (1982).

2007

2006

H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber gyroscope," J. Lighw. Technol. 24, 3169-3174 (2006).

2005

M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Expr. 13, 1457-1467 (2005).

F. Poletti, N. G. Broderick, D. Richardson, T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Expr. 13, 9115-9124 (2005).

2003

G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russell, L. Farr, B. J. Mangan, H. Sabert, "Properties of hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Expr. 11, 1613-1620 (2003).

2001

1997

A. H. Rose, S. M. Etzel, C. M. Wang, "Verdet constant dispersion in annealed optical fiber current sensors," J. Lightw. Technol. 15, 803-807 (1997).

1996

1995

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, R. La Naour, "The Malus Fabry–Perot interferometer," Appl. Phys. Lett. 66, 3546-3548 (1995).

1991

1986

1982

G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, "Faraday rotation in coiled, monomode optical fibers: Isolators, filters, and magnetic sensors," Opt. Letters 7, 238-240 (1982).

1978

Appl. Opt.

Appl. Phys. Lett.

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, R. La Naour, "The Malus Fabry–Perot interferometer," Appl. Phys. Lett. 66, 3546-3548 (1995).

J. Lightw. Technol.

A. H. Rose, S. M. Etzel, C. M. Wang, "Verdet constant dispersion in annealed optical fiber current sensors," J. Lightw. Technol. 15, 803-807 (1997).

J. Lighw. Technol.

H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber gyroscope," J. Lighw. Technol. 24, 3169-3174 (2006).

Opt. Expr.

M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Expr. 13, 1457-1467 (2005).

F. Poletti, N. G. Broderick, D. Richardson, T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Expr. 13, 9115-9124 (2005).

G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russell, L. Farr, B. J. Mangan, H. Sabert, "Properties of hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Expr. 11, 1613-1620 (2003).

Opt. Lett.

Opt. Letters

G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, "Faraday rotation in coiled, monomode optical fibers: Isolators, filters, and magnetic sensors," Opt. Letters 7, 238-240 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.