Abstract

We have investigated the improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain as compared to using an electronic amplifier in the cavity. The optoelectronic oscillator achieves the necessary RF gain for oscillation by using the carrier-suppression technique of a low-biased Mach-Zehnder modulator (MZM) followed by optical amplification. The measured RF gain due to this all-photonic technique is as high as 15 dB and matches well with theoretical predictions. The phase noise of the generated 10 GHz signal is at least 10 dB lower than the signal from the same oscillator using an electronic amplifier. The improvement in the phase noise is due to the lower RF noise figure of the all-photonic gain process as compared to the electronic amplifier configuration.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Vig, "Military applications of high-accuracy frequency standards and clocks," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 40, 522-527 (1993).
  2. X. S. Yao, RF Photonic Technology in Optical Fiber Links (Cambridge University Press, 2002).
  3. X. S. Yao, L. Maleki, "Optoelectronic oscillator for photonic systems," IEEE J. Quantum Electron. 32, 1141-1149 (1996).
  4. J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, K. Yvind, "A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals," IEEE Photon. Technol. Lett. 14, 1004-1006 (2002).
  5. P. Devgan, V. Urick, J. McKinney, K. Williams, "A low-jitter master-slave optoelectronic oscillator employing all-photonic gain," Proc. IEEE Int'l. Meet. Microw. Photon. (2007) pp. 70-73.
  6. M. Shin, P. S. Devgan, V. S. Grigoryan, P. Kumar, X. D. Chung, J. Kim, "Low phase-noise 40 GHz optical pulses from a self-starting electroabsorption-modulator-based optoelectronic oscillator," Proc. Opt. Fiber Commun. Conf. (2006).
  7. P. Devgan, D. Serkland, G. Keeler, K. Geib, P. Kumar, "An optoelectronic oscillator using an 850-nm VCSEL for generating low jitter optical pulses," IEEE Photon. Technol. Lett. 18, 685-687 (2006).
  8. Y. Ji, X. S. Yao, L. Maleki, "Compact optoelectronic oscillator with ultra-low phase noise performance," Electron. Lett. 35, 1554-1555 (1999).
  9. J. Lasri, P. Devgan, R. Tang, P. Kumar, "Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses," Opt. Exp. 11, 1430-1435 (2003).
  10. S. Romisch, J. Kitching, E. Ferrh-Pikal, L. Hollberg, F. L. Walls, "Performance evaluation of an optoelectronic oscillator," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 47, 1159-1165 (2000).
  11. E. Salik, N. Yu, L. Maleki, "An ultralow phase noise coupled optoelectronic oscillator," IEEE Photon. Technol. Lett. 19, 444-446 (2007).
  12. C. W. Nelson, A. Hati, D. A. Howe, W. Zhou, "Microwave optoelectronic oscillator with optical gain," Proc. IEEE Frequency Control Symp. (2007) pp. 1014-1019.
  13. M. L. Farwell, W. S. C. Chang, D. R. Huber, "Increased linear dynamic range by low biasing the Mach–Zehnder modulator," IEEE Photon. Technol. Lett. 5, 779-782 (1993).
  14. V. J. Urick, M. S. Rogge, F. Bucholtz, K. J. Williams, "Wideband (0.045–6.25 GHz) 40 km analogue fibre-optic link with ultrahigh ($ > {40}\,{\hbox {dB}}$) all-photonic gain," Electron. Lett. 42, 552-553 (2006).
  15. M. M. Sisto, S. LaRochelle, L. A. Rusch, "Gain optimization by modulator-bias control in radio-over-fiber links," J. Lightw. Technol. 24, 4974-4982 (2006).
  16. V. Urick, M. Godinez, P. Devgan, J. McKinney, F. Bucholtz, "Analysis of an analog fiber-optic link employing a low-biased Mach–Zehnder modulator followed by an erbium-doped fiber amplifier," J. Lightw. Technol. 27, 2013 -2019 (2009).
  17. V. J. Urick, M. S. Rogge, F. Bucholtz, K. J. Williams, "The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers," IEEE Trans. Microw. Theory Tech. 54, 3141-3145 (2006).
  18. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78, (2007).
  19. K. M. Hudek, A. Hati, D. A. Howe, C. W. Nelson, W. Zhou, "Further examination of the injection-locked dual optoelectronic oscillator," Proc. IEEE Frequency Control Symp. (2007) pp. 796-800.

2009 (1)

V. Urick, M. Godinez, P. Devgan, J. McKinney, F. Bucholtz, "Analysis of an analog fiber-optic link employing a low-biased Mach–Zehnder modulator followed by an erbium-doped fiber amplifier," J. Lightw. Technol. 27, 2013 -2019 (2009).

2007 (2)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78, (2007).

E. Salik, N. Yu, L. Maleki, "An ultralow phase noise coupled optoelectronic oscillator," IEEE Photon. Technol. Lett. 19, 444-446 (2007).

2006 (4)

P. Devgan, D. Serkland, G. Keeler, K. Geib, P. Kumar, "An optoelectronic oscillator using an 850-nm VCSEL for generating low jitter optical pulses," IEEE Photon. Technol. Lett. 18, 685-687 (2006).

V. J. Urick, M. S. Rogge, F. Bucholtz, K. J. Williams, "The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers," IEEE Trans. Microw. Theory Tech. 54, 3141-3145 (2006).

V. J. Urick, M. S. Rogge, F. Bucholtz, K. J. Williams, "Wideband (0.045–6.25 GHz) 40 km analogue fibre-optic link with ultrahigh ($ > {40}\,{\hbox {dB}}$) all-photonic gain," Electron. Lett. 42, 552-553 (2006).

M. M. Sisto, S. LaRochelle, L. A. Rusch, "Gain optimization by modulator-bias control in radio-over-fiber links," J. Lightw. Technol. 24, 4974-4982 (2006).

2003 (1)

J. Lasri, P. Devgan, R. Tang, P. Kumar, "Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses," Opt. Exp. 11, 1430-1435 (2003).

2002 (1)

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, K. Yvind, "A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals," IEEE Photon. Technol. Lett. 14, 1004-1006 (2002).

2000 (1)

S. Romisch, J. Kitching, E. Ferrh-Pikal, L. Hollberg, F. L. Walls, "Performance evaluation of an optoelectronic oscillator," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 47, 1159-1165 (2000).

1999 (1)

Y. Ji, X. S. Yao, L. Maleki, "Compact optoelectronic oscillator with ultra-low phase noise performance," Electron. Lett. 35, 1554-1555 (1999).

1996 (1)

X. S. Yao, L. Maleki, "Optoelectronic oscillator for photonic systems," IEEE J. Quantum Electron. 32, 1141-1149 (1996).

1993 (2)

J. Vig, "Military applications of high-accuracy frequency standards and clocks," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 40, 522-527 (1993).

M. L. Farwell, W. S. C. Chang, D. R. Huber, "Increased linear dynamic range by low biasing the Mach–Zehnder modulator," IEEE Photon. Technol. Lett. 5, 779-782 (1993).

Electron. Lett. (2)

Y. Ji, X. S. Yao, L. Maleki, "Compact optoelectronic oscillator with ultra-low phase noise performance," Electron. Lett. 35, 1554-1555 (1999).

V. J. Urick, M. S. Rogge, F. Bucholtz, K. J. Williams, "Wideband (0.045–6.25 GHz) 40 km analogue fibre-optic link with ultrahigh ($ > {40}\,{\hbox {dB}}$) all-photonic gain," Electron. Lett. 42, 552-553 (2006).

IEEE J. Quantum Electron. (1)

X. S. Yao, L. Maleki, "Optoelectronic oscillator for photonic systems," IEEE J. Quantum Electron. 32, 1141-1149 (1996).

IEEE Photon. Technol. Lett. (4)

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, K. Yvind, "A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals," IEEE Photon. Technol. Lett. 14, 1004-1006 (2002).

P. Devgan, D. Serkland, G. Keeler, K. Geib, P. Kumar, "An optoelectronic oscillator using an 850-nm VCSEL for generating low jitter optical pulses," IEEE Photon. Technol. Lett. 18, 685-687 (2006).

E. Salik, N. Yu, L. Maleki, "An ultralow phase noise coupled optoelectronic oscillator," IEEE Photon. Technol. Lett. 19, 444-446 (2007).

M. L. Farwell, W. S. C. Chang, D. R. Huber, "Increased linear dynamic range by low biasing the Mach–Zehnder modulator," IEEE Photon. Technol. Lett. 5, 779-782 (1993).

IEEE Trans. Microw. Theory Tech. (1)

V. J. Urick, M. S. Rogge, F. Bucholtz, K. J. Williams, "The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers," IEEE Trans. Microw. Theory Tech. 54, 3141-3145 (2006).

IEEE Trans. Ultrason., Ferroelectr., Freq. Control (2)

S. Romisch, J. Kitching, E. Ferrh-Pikal, L. Hollberg, F. L. Walls, "Performance evaluation of an optoelectronic oscillator," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 47, 1159-1165 (2000).

J. Vig, "Military applications of high-accuracy frequency standards and clocks," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 40, 522-527 (1993).

J. Lightw. Technol. (2)

M. M. Sisto, S. LaRochelle, L. A. Rusch, "Gain optimization by modulator-bias control in radio-over-fiber links," J. Lightw. Technol. 24, 4974-4982 (2006).

V. Urick, M. Godinez, P. Devgan, J. McKinney, F. Bucholtz, "Analysis of an analog fiber-optic link employing a low-biased Mach–Zehnder modulator followed by an erbium-doped fiber amplifier," J. Lightw. Technol. 27, 2013 -2019 (2009).

Opt. Exp. (1)

J. Lasri, P. Devgan, R. Tang, P. Kumar, "Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses," Opt. Exp. 11, 1430-1435 (2003).

Rev. Sci. Instrum. (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78, (2007).

Other (5)

K. M. Hudek, A. Hati, D. A. Howe, C. W. Nelson, W. Zhou, "Further examination of the injection-locked dual optoelectronic oscillator," Proc. IEEE Frequency Control Symp. (2007) pp. 796-800.

C. W. Nelson, A. Hati, D. A. Howe, W. Zhou, "Microwave optoelectronic oscillator with optical gain," Proc. IEEE Frequency Control Symp. (2007) pp. 1014-1019.

X. S. Yao, RF Photonic Technology in Optical Fiber Links (Cambridge University Press, 2002).

P. Devgan, V. Urick, J. McKinney, K. Williams, "A low-jitter master-slave optoelectronic oscillator employing all-photonic gain," Proc. IEEE Int'l. Meet. Microw. Photon. (2007) pp. 70-73.

M. Shin, P. S. Devgan, V. S. Grigoryan, P. Kumar, X. D. Chung, J. Kim, "Low phase-noise 40 GHz optical pulses from a self-starting electroabsorption-modulator-based optoelectronic oscillator," Proc. Opt. Fiber Commun. Conf. (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.