Abstract

A theoretical model for simulating widely tunable sampled-grating distributed Bragg reflector (SGDBR) lasers has been developed. The model integrates both time-domain traveling-wave method and frequency-domain transfer-matrix method into a single procedure. The active region of the device is still operated in the conventional time domain, while the passive parts are firstly performed by the transfer-matrix method and then transformed to the time domain via digital filters. Both the static and dynamic characteristics of SGDBR lasers, such as L–I curve, output spectrum, tuning characteristics, large-signal modulation, and dynamic wavelength switching, can be clearly visible in our model and in qualitative agreement with the published experimental results.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription