Abstract

An in-line all-fiber etalon, formed by a self-enclosed Fabry–Perot cavity inside an optical fiber fabricated by using 157-nm laser micromachining, is first demonstrated in this paper. This etalon has almost perfect sensor characteristics, such as excellent interferometric fringe contrast of up to ${\sim}30$ dB, low thermal cross-sensitivity, great potential to realize mass-production with good reproducibility, low cost, super capability to operate in harsh environments, etc. The static, quasi-static, and dynamic strain characteristics of the etalon sensor are investigated, which prove that such an etalon could meet versatile applications for strain measurement.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription