Abstract

An in-line all-fiber etalon, formed by a self-enclosed Fabry–Perot cavity inside an optical fiber fabricated by using 157-nm laser micromachining, is first demonstrated in this paper. This etalon has almost perfect sensor characteristics, such as excellent interferometric fringe contrast of up to ${\sim}30$ dB, low thermal cross-sensitivity, great potential to realize mass-production with good reproducibility, low cost, super capability to operate in harsh environments, etc. The static, quasi-static, and dynamic strain characteristics of the etalon sensor are investigated, which prove that such an etalon could meet versatile applications for strain measurement.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. Y. J. Rao, "Review article: In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
  2. Y. J. Rao, "Recent progress in applications of in-fibre Bragg grating sensors," Opt. Lasers. Eng. 13, 297-324 (1999).
  3. R. O. Claus, M. F. Gunther, A. B. Wang, K. A. Murphy, D. Sun, Applications of Fiber Optic Sensors in Engineering Mechanics (ASCE, 1993).
  4. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, E. J. Friebele, "In-line fiber etalon for strain measurement," Opt. Lett. 18, 1973-1975 (1993).
  5. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, "In-line fiber etalon (ILFE) fiber-optic strain sensors," J. Lightw. Technol. 13, 1256-1263 (1995).
  6. Y. J. Rao, D. A. Jackson, "Review article: Recent progress in fiber-optic low-coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).
  7. H. F. Taylor, Fiber Optic Sensors (Marcel Dekker, 2002).
  8. Y. J. Rao, "Review article: Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors ," Opt. Fiber Technol. 12, 227-237 (2006).
  9. J. L. Santos, A. P. Leite, D. A. Jackson, "Optical fiber sensing with a low-finesse Fabry–Perot cavity," Appl. Opt. 31, 7361-7366 (1992).
  10. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, "Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors," Opt. Lett. 16, 273-275 (1991).
  11. R. O. Claus, M. F. Gunther, A. Wang, K. A. Murphy, "Extrinsic Fabry–Perot sensor for strain and crack opening displacement measurements from ${-}200$ to 900 degrees," Smart Mater. Struct. 1, 237-242 (1992).
  12. M. Schmidt, N. Fürstenau, "Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation," Opt. Lett. 24, 599-601 (1999).
  13. M. Schmidt, B. Werther, N. Fürstenau, "Fiber-optic extrinsic Fabry–Perot interferometer strain sensor with $< 50$ pm displacement resolution using three-wavelength digital phase demodulation ," Opt. Exp. 8, 475-480 (2001).
  14. X. P. Chen, F. B. Shen, Z. Wang, Z. Y. Huang, A. B. Wang, "Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor," Appl. Opt. 45, 7760-7766 (2006).
  15. E. Cibula, D. Donlagic, "In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR," Opt. Exp. 15, 8719-8730 (2007).
  16. K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda, K. Midorikawa, "Influence of laser fluence and irradiation timing of F$_{2}$ laser on ablation properties of fused silica in F$_{2}$ -KrF excimer laser multi-wavelength excitation process," Appl. Phys. A 73, 755-759 (2001).
  17. V. Bhatia, M. B. Sen, K. A. Murphy, R. O. Claus, "Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurement ," Electron. Lett. 32, 247-249 (1996).
  18. H. Singh, J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities," J. Lightw. Technol. 15, 647-653 (1997).

2007

E. Cibula, D. Donlagic, "In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR," Opt. Exp. 15, 8719-8730 (2007).

2006

Y. J. Rao, "Review article: Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors ," Opt. Fiber Technol. 12, 227-237 (2006).

X. P. Chen, F. B. Shen, Z. Wang, Z. Y. Huang, A. B. Wang, "Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor," Appl. Opt. 45, 7760-7766 (2006).

2001

M. Schmidt, B. Werther, N. Fürstenau, "Fiber-optic extrinsic Fabry–Perot interferometer strain sensor with $< 50$ pm displacement resolution using three-wavelength digital phase demodulation ," Opt. Exp. 8, 475-480 (2001).

K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda, K. Midorikawa, "Influence of laser fluence and irradiation timing of F$_{2}$ laser on ablation properties of fused silica in F$_{2}$ -KrF excimer laser multi-wavelength excitation process," Appl. Phys. A 73, 755-759 (2001).

1999

Y. J. Rao, "Recent progress in applications of in-fibre Bragg grating sensors," Opt. Lasers. Eng. 13, 297-324 (1999).

M. Schmidt, N. Fürstenau, "Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation," Opt. Lett. 24, 599-601 (1999).

1997

H. Singh, J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities," J. Lightw. Technol. 15, 647-653 (1997).

Y. J. Rao, "Review article: In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).

1996

Y. J. Rao, D. A. Jackson, "Review article: Recent progress in fiber-optic low-coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).

V. Bhatia, M. B. Sen, K. A. Murphy, R. O. Claus, "Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurement ," Electron. Lett. 32, 247-249 (1996).

1995

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, "In-line fiber etalon (ILFE) fiber-optic strain sensors," J. Lightw. Technol. 13, 1256-1263 (1995).

1993

1992

J. L. Santos, A. P. Leite, D. A. Jackson, "Optical fiber sensing with a low-finesse Fabry–Perot cavity," Appl. Opt. 31, 7361-7366 (1992).

R. O. Claus, M. F. Gunther, A. Wang, K. A. Murphy, "Extrinsic Fabry–Perot sensor for strain and crack opening displacement measurements from ${-}200$ to 900 degrees," Smart Mater. Struct. 1, 237-242 (1992).

1991

Appl. Opt.

Appl. Phys. A

K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda, K. Midorikawa, "Influence of laser fluence and irradiation timing of F$_{2}$ laser on ablation properties of fused silica in F$_{2}$ -KrF excimer laser multi-wavelength excitation process," Appl. Phys. A 73, 755-759 (2001).

Electron. Lett.

V. Bhatia, M. B. Sen, K. A. Murphy, R. O. Claus, "Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurement ," Electron. Lett. 32, 247-249 (1996).

J. Lightw. Technol.

H. Singh, J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities," J. Lightw. Technol. 15, 647-653 (1997).

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, "In-line fiber etalon (ILFE) fiber-optic strain sensors," J. Lightw. Technol. 13, 1256-1263 (1995).

Meas. Sci. Technol.

Y. J. Rao, D. A. Jackson, "Review article: Recent progress in fiber-optic low-coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).

Y. J. Rao, "Review article: In-fiber Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).

Opt. Exp.

M. Schmidt, B. Werther, N. Fürstenau, "Fiber-optic extrinsic Fabry–Perot interferometer strain sensor with $< 50$ pm displacement resolution using three-wavelength digital phase demodulation ," Opt. Exp. 8, 475-480 (2001).

E. Cibula, D. Donlagic, "In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR," Opt. Exp. 15, 8719-8730 (2007).

Opt. Fiber Technol.

Y. J. Rao, "Review article: Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors ," Opt. Fiber Technol. 12, 227-237 (2006).

Opt. Lasers. Eng.

Y. J. Rao, "Recent progress in applications of in-fibre Bragg grating sensors," Opt. Lasers. Eng. 13, 297-324 (1999).

Opt. Lett.

Smart Mater. Struct.

R. O. Claus, M. F. Gunther, A. Wang, K. A. Murphy, "Extrinsic Fabry–Perot sensor for strain and crack opening displacement measurements from ${-}200$ to 900 degrees," Smart Mater. Struct. 1, 237-242 (1992).

Other

R. O. Claus, M. F. Gunther, A. B. Wang, K. A. Murphy, D. Sun, Applications of Fiber Optic Sensors in Engineering Mechanics (ASCE, 1993).

H. F. Taylor, Fiber Optic Sensors (Marcel Dekker, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.