Abstract

Transparent, all-optical cross-connect switches provide non-blocking, one-to-one reconfigurable interconnections between any of $N$ input fibers and any of $N$ output fibers. Cross-connects based on all-fiber rather than free-space interconnections have the potential for low opto-mechanical complexity, miniaturization, high optical power handling and ideal optical performance. In this paper, we propose and analyze novel architectures for large-scale, all-fiber cross-connects based on the application of Theory of Knots and Braids to fiber switching and compare them on the basis of scalability, modularity and reconfiguration time. A prototype 140 input by 140 output, automated all-fiber cross-connect is developed to demonstrate these concepts.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription