Abstract

The paper deals with diffusion processes of the core dopant during thermal connection (splicing in electric arc) of telecommunication fibers whose parameters vary considerably. A method for defining values of diffusion coefficients ${\rm GeO}_{2}$ in ${\rm SiO}_{2}$ in splicing temperature has been presented. Better consistence of the dopant Gaussian and diffusion distribution has been found the longer the diffusion time—that is, splicing time. Theoretical analysis of thermally diffused expanded core (TEC) transit area transmission properties was performed which revealed that it is possible to obtain splice loss of thermal connections (splice) of fibers with different parameters, such as of the type G.652 and G.655, below 0.08 dB, using classical connection in electric arc. Whereas, using connection methods that increase the length of TEC, for example, connection by means of gas micro-burners, zero attenuation of such a connection can be accomplished.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J.-I. Sakai, T. Kimura, "Splicing and bending losses of single-mode optical fibers," Appl. Opt. 17, 3653-3659 (1978).
  2. J. T. Krause, W. A. Reed, K. L. Walker, "Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration," J. Lightwave Technol. LT-4, 837-840 (1986).
  3. K. Shigihara, K. Shiraishi, K. Kawakami, "Mode field transforming fiber between dissimilar waveguides," J. Appl. Phys. 60, 4293-4298 (1986).
  4. A. D. Yablon, Optical Fiber Fusion Splicing (Springer-Verlag, 2005).
  5. M. Ratuszek, J. Majewski, Z. Zakrzewski, M. J. Ratuszek, "Process optimization of the arc fusion splicing different types of single mode telecommunication fibers," Opto-Electron. Rev. 8, 161-170 (2000).
  6. M. Ratuszek, "Analysis of reflectometric measurements losses of spliced single mode telecommunication fibers with significantly different parameters," Opt. Appl. XXXV, 347-363 (2005).
  7. M. Ratuszek, "Analysis of loss of single mode telecommunication fiber thermally diffused core area," Opt. Appl. XXXVII, 279-294 (2007).
  8. J. T. Lizier, G. E. Town, "Splice losses in holey optical fibers," IEEE Photon. Technol. Lett. 13, 794-796 (2001).
  9. F. Couny, F. Benabid, P. S. Light, "Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007).
  10. W. Zheng, O. Hulten, R. Rylander, "Erbium-doped fiber splicing and splice loss estimation," J. Lightwave Technol. 12, 430-435 (1994).
  11. T. Veng, B. Palsdottir, "Investigation and optimization of fusion splicing abilities between erbium-doped optical fibres and standard singlemode fibres," Electron. Lett. 41, 10-11 (2005).
  12. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  13. A. Majewski, Teoria i Projektowanie ‘swiatlowodów (WNT, 1991).
  14. N. Tomoyuki, O. Taichi, K. Kengo, N. Masashi, T. Kotaro, "Fiber for next-generation extra-large-capacity DWDM transmission," Hitachi Cable Rev. 3-6 (2001).
  15. K. Shiraishi, Y. Aizawa, S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. Lightwave Technol. 8, 1151-1161 (1990).
  16. T. Haibara, T. Nakashma, M. Matsnmoto, H. Hanafusa, "Connection loss reduction by thermally-diffused expanded core fiber," IEEE Photon. Technol. Lett. 3, 348-350 (1991).
  17. M. Ratuszek, "Analysis of loss of single mode telecommunication fiber thermally diffused core areas," Proc. SPIE 6608, 660817-16 (2007).
  18. J. Luo, "Modeling dissimilar optical fiber splices with substantial diffusion," J. Lightwave Technol. 25, 3575-3579 (2007).
  19. Transmission Media Characteristics: Characteristics of a Non-Zero Dispersion Shifted Single Mode Optical Fibre Cable, (2003) Recommendation ITU-T G.655.
  20. Transmission Media Characteristics: Characteristics of a Single-Mode Optical Fibre Cable, (2003) Recommendation ITU-T G.652.
  21. K. Shiraishi, T. Yanagi, S. Kawakami, "Light-propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
  22. D. Marcuse, "Microdeformation losses of single mode fibers," Appl. Opt. 23, 1082-1091 (1984).
  23. M. Ratuszek, J. Majewski, Z. Zakrzewski, M. J. Ratuszek, "Analysis of single-modality of thermally diffused areas of telecommunication optical fiber core," Proc. SPIE 6608, 660819-1 (2007).
  24. M. Ratuszek, "Influence of temperature and length of splicing areas on the loss of joints of single mode telecommunication fibers," Proc. SPIE 7120, 7120-32 (2008).
  25. K. Kato, I. Nishi, K. Yoshino, H. Hanafusa, "Optical coupling characteristics of laser diodes to thermally diffused expanded core fiber coupling using an aspheric lens," IEEE Photon. Technol. Lett. 3, 469-470 (1991).
  26. Y. Ohtera, O. Hanaizumi, S. Kawakami, "Numerical analysis of eigenmodes and splice losses of thermally diffused expanded core fibers," J. Lightwave Technol. 17, 2675-2682 (1999).
  27. M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, "Characteristics of thermally expanded core fiber," J. Lightwave Technol. 14, 2209-2214 (1996).
  28. W. Zheng, "The real time control technique for erbium doped fiber splicing," Ericsson Rev. 1-24 (1993).
  29. W. Jost, Diffusion in Solids, Liquids, Gases (Academic, 1960).
  30. H. Yamada, H. Hanafusa, "Mode shape convertor produced by the thermal diffusion of different dopants," IEEE Photon. Technol. Lett. 6, 531-533 (1994).
  31. J. Crank, The Mathematics of Diffusion (Clarendon, 1975).
  32. R. S. Anderssen, F. d. Hoog, R. A. Sammut, "Modes of Gaussian profile optical fibres," Opt. Quantum Electron. 13, 217-224 (1981).

2008 (1)

M. Ratuszek, "Influence of temperature and length of splicing areas on the loss of joints of single mode telecommunication fibers," Proc. SPIE 7120, 7120-32 (2008).

2007 (5)

M. Ratuszek, J. Majewski, Z. Zakrzewski, M. J. Ratuszek, "Analysis of single-modality of thermally diffused areas of telecommunication optical fiber core," Proc. SPIE 6608, 660819-1 (2007).

M. Ratuszek, "Analysis of loss of single mode telecommunication fiber thermally diffused core area," Opt. Appl. XXXVII, 279-294 (2007).

F. Couny, F. Benabid, P. S. Light, "Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007).

M. Ratuszek, "Analysis of loss of single mode telecommunication fiber thermally diffused core areas," Proc. SPIE 6608, 660817-16 (2007).

J. Luo, "Modeling dissimilar optical fiber splices with substantial diffusion," J. Lightwave Technol. 25, 3575-3579 (2007).

2005 (2)

T. Veng, B. Palsdottir, "Investigation and optimization of fusion splicing abilities between erbium-doped optical fibres and standard singlemode fibres," Electron. Lett. 41, 10-11 (2005).

M. Ratuszek, "Analysis of reflectometric measurements losses of spliced single mode telecommunication fibers with significantly different parameters," Opt. Appl. XXXV, 347-363 (2005).

2001 (2)

N. Tomoyuki, O. Taichi, K. Kengo, N. Masashi, T. Kotaro, "Fiber for next-generation extra-large-capacity DWDM transmission," Hitachi Cable Rev. 3-6 (2001).

J. T. Lizier, G. E. Town, "Splice losses in holey optical fibers," IEEE Photon. Technol. Lett. 13, 794-796 (2001).

2000 (1)

M. Ratuszek, J. Majewski, Z. Zakrzewski, M. J. Ratuszek, "Process optimization of the arc fusion splicing different types of single mode telecommunication fibers," Opto-Electron. Rev. 8, 161-170 (2000).

1999 (1)

1996 (1)

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, "Characteristics of thermally expanded core fiber," J. Lightwave Technol. 14, 2209-2214 (1996).

1994 (2)

H. Yamada, H. Hanafusa, "Mode shape convertor produced by the thermal diffusion of different dopants," IEEE Photon. Technol. Lett. 6, 531-533 (1994).

W. Zheng, O. Hulten, R. Rylander, "Erbium-doped fiber splicing and splice loss estimation," J. Lightwave Technol. 12, 430-435 (1994).

1993 (2)

K. Shiraishi, T. Yanagi, S. Kawakami, "Light-propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).

W. Zheng, "The real time control technique for erbium doped fiber splicing," Ericsson Rev. 1-24 (1993).

1991 (2)

K. Kato, I. Nishi, K. Yoshino, H. Hanafusa, "Optical coupling characteristics of laser diodes to thermally diffused expanded core fiber coupling using an aspheric lens," IEEE Photon. Technol. Lett. 3, 469-470 (1991).

T. Haibara, T. Nakashma, M. Matsnmoto, H. Hanafusa, "Connection loss reduction by thermally-diffused expanded core fiber," IEEE Photon. Technol. Lett. 3, 348-350 (1991).

1990 (1)

K. Shiraishi, Y. Aizawa, S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. Lightwave Technol. 8, 1151-1161 (1990).

1986 (2)

J. T. Krause, W. A. Reed, K. L. Walker, "Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration," J. Lightwave Technol. LT-4, 837-840 (1986).

K. Shigihara, K. Shiraishi, K. Kawakami, "Mode field transforming fiber between dissimilar waveguides," J. Appl. Phys. 60, 4293-4298 (1986).

1984 (1)

1981 (1)

R. S. Anderssen, F. d. Hoog, R. A. Sammut, "Modes of Gaussian profile optical fibres," Opt. Quantum Electron. 13, 217-224 (1981).

1978 (1)

Appl. Opt. (2)

Electron. Lett. (1)

T. Veng, B. Palsdottir, "Investigation and optimization of fusion splicing abilities between erbium-doped optical fibres and standard singlemode fibres," Electron. Lett. 41, 10-11 (2005).

Ericsson Rev. (1)

W. Zheng, "The real time control technique for erbium doped fiber splicing," Ericsson Rev. 1-24 (1993).

Hitachi Cable Rev. (1)

N. Tomoyuki, O. Taichi, K. Kengo, N. Masashi, T. Kotaro, "Fiber for next-generation extra-large-capacity DWDM transmission," Hitachi Cable Rev. 3-6 (2001).

IEEE Photon. Technol. Lett. (5)

T. Haibara, T. Nakashma, M. Matsnmoto, H. Hanafusa, "Connection loss reduction by thermally-diffused expanded core fiber," IEEE Photon. Technol. Lett. 3, 348-350 (1991).

J. T. Lizier, G. E. Town, "Splice losses in holey optical fibers," IEEE Photon. Technol. Lett. 13, 794-796 (2001).

F. Couny, F. Benabid, P. S. Light, "Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber," IEEE Photon. Technol. Lett. 19, 1020-1022 (2007).

H. Yamada, H. Hanafusa, "Mode shape convertor produced by the thermal diffusion of different dopants," IEEE Photon. Technol. Lett. 6, 531-533 (1994).

K. Kato, I. Nishi, K. Yoshino, H. Hanafusa, "Optical coupling characteristics of laser diodes to thermally diffused expanded core fiber coupling using an aspheric lens," IEEE Photon. Technol. Lett. 3, 469-470 (1991).

J. Appl. Phys. (1)

K. Shigihara, K. Shiraishi, K. Kawakami, "Mode field transforming fiber between dissimilar waveguides," J. Appl. Phys. 60, 4293-4298 (1986).

J. Lightwave Technol. (7)

J. T. Krause, W. A. Reed, K. L. Walker, "Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration," J. Lightwave Technol. LT-4, 837-840 (1986).

W. Zheng, O. Hulten, R. Rylander, "Erbium-doped fiber splicing and splice loss estimation," J. Lightwave Technol. 12, 430-435 (1994).

K. Shiraishi, Y. Aizawa, S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. Lightwave Technol. 8, 1151-1161 (1990).

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, "Characteristics of thermally expanded core fiber," J. Lightwave Technol. 14, 2209-2214 (1996).

K. Shiraishi, T. Yanagi, S. Kawakami, "Light-propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).

Y. Ohtera, O. Hanaizumi, S. Kawakami, "Numerical analysis of eigenmodes and splice losses of thermally diffused expanded core fibers," J. Lightwave Technol. 17, 2675-2682 (1999).

J. Luo, "Modeling dissimilar optical fiber splices with substantial diffusion," J. Lightwave Technol. 25, 3575-3579 (2007).

Opt. Appl. (2)

M. Ratuszek, "Analysis of reflectometric measurements losses of spliced single mode telecommunication fibers with significantly different parameters," Opt. Appl. XXXV, 347-363 (2005).

M. Ratuszek, "Analysis of loss of single mode telecommunication fiber thermally diffused core area," Opt. Appl. XXXVII, 279-294 (2007).

Opt. Quantum Electron. (1)

R. S. Anderssen, F. d. Hoog, R. A. Sammut, "Modes of Gaussian profile optical fibres," Opt. Quantum Electron. 13, 217-224 (1981).

Opto-Electron. Rev. (1)

M. Ratuszek, J. Majewski, Z. Zakrzewski, M. J. Ratuszek, "Process optimization of the arc fusion splicing different types of single mode telecommunication fibers," Opto-Electron. Rev. 8, 161-170 (2000).

Proc. SPIE (3)

M. Ratuszek, "Analysis of loss of single mode telecommunication fiber thermally diffused core areas," Proc. SPIE 6608, 660817-16 (2007).

M. Ratuszek, J. Majewski, Z. Zakrzewski, M. J. Ratuszek, "Analysis of single-modality of thermally diffused areas of telecommunication optical fiber core," Proc. SPIE 6608, 660819-1 (2007).

M. Ratuszek, "Influence of temperature and length of splicing areas on the loss of joints of single mode telecommunication fibers," Proc. SPIE 7120, 7120-32 (2008).

Other (7)

J. Crank, The Mathematics of Diffusion (Clarendon, 1975).

W. Jost, Diffusion in Solids, Liquids, Gases (Academic, 1960).

Transmission Media Characteristics: Characteristics of a Non-Zero Dispersion Shifted Single Mode Optical Fibre Cable, (2003) Recommendation ITU-T G.655.

Transmission Media Characteristics: Characteristics of a Single-Mode Optical Fibre Cable, (2003) Recommendation ITU-T G.652.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

A. Majewski, Teoria i Projektowanie ‘swiatlowodów (WNT, 1991).

A. D. Yablon, Optical Fiber Fusion Splicing (Springer-Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.