Abstract

The soft turn-on of semiconductor lasers leads to uncertainty in defining and measuring the laser threshold injection current, ${I}_{\rm th}$. Previously, practical calculation algorithms have been developed to achieve high-accuracy measurement of a clearly defined and reproducible quantity which is called ${I}_{\rm th}$. We demonstrate a new and higher accuracy measurement of ${I}_{\rm th}$ using the dependency of the relaxation oscillation frequency on injection current, as compared to the existing standardized approaches. Further, if it is accepted that relaxation oscillations do not occur below laser threshold, this may be regarded as a more fundamentally based definition and measurement method to determine the laser threshold injection current in a semiconductor laser. The method may also be applicable to other types of lasers.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. Bellcore standardIntroduction to Reliability of Laser Diodes and Modules Special Report SR-TSY-001369 http://telecom-info.telcordia.com/ido/AUX/SR_TSY_001369_TOC.i01.pdf available for purchase .
  3. The Differences Between Threshold Current Calculation Methods ILX Lightwave Application Note # 12 http://www.ilxlightwave.com/appnotes/AN_12_REV01_Differences_Between_Threshold_Current_Calculations.pdf.
  4. C. McMahon, D. M. Kane, J. P. Toomey, J. S. Lawrence, "High accuracy measurement of relaxation oscillation frequency in heavily damped quantum well lasers," Proc. Int. Conf. Nanosci. Nanotechnol. (2006) pp. 497-500.
  5. K. Petermann, Laser Diode Modulation and Noise, Advances in Optoelectronics (Kluwer, 1988) pp. 79-80.
  6. C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, D. J. Mowbray, "High-performance 1.3 ${\mu{\hbox{m}}}$ InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature," IEE Proc.-Optoelectron. 153, 280-283 (2006).
  7. B. Docter, T. Segawa, T. Kakitsuka, S. Matsuo, T. Ishii, Y. Kawaguchi, Y. Kondo, H. Suzuki, F. Karouta, M. K. Smit, "Short cavity DBR laser using vertical groove gratings for large-scale photonic integrated circuits," IEEE Photon. Techol. Letts. 19, 1469-1471 (2007).
  8. G. Park, O. B. Shchekin, D. L. Huffaker, D. G. Deppe, "Submilliamp thresholds and ultra-low threshold current density below room temperature," Electron. Lett. 36, 1283-1284 (2000).
  9. K. Y. Lau, P. L. Derry, A. Yariv, "Ultimate limit in low threshold quantum well GaAlAs semiconductor lasers," Appl. Phys. Lett 52, 88-90 (1988).
  10. M. Krakowski, D. Rondi, A. Talneau, Y. Combemale, G. Chevalier, F. Deborgies, P. Maillot, P. Richin, R. Blodeau, L. D'Auria, B. de Gremoux, "Ultra-low-threshold, high bandwidth, very-low-noise operation of 1.52 $\mu{\rm m}$ GaInAsP/InP DFB buried ridge structure laser diodes entirely grown by MOCVD," IEEE J Quantum Electron. 25, 1346-1352 (1989).
  11. H. Z. Chen, A. Ghaffari, H. Wang, H. Morkoc, A. Yariv, "Low threshold ( $\sim 600\ {\rm A/cm}^{2}$ at room temperature) GaAs/AlGaAs lasers on Si(100)," Appl. Phys. Lett 51, 1320-1321 (1987).
  12. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).

2007 (1)

B. Docter, T. Segawa, T. Kakitsuka, S. Matsuo, T. Ishii, Y. Kawaguchi, Y. Kondo, H. Suzuki, F. Karouta, M. K. Smit, "Short cavity DBR laser using vertical groove gratings for large-scale photonic integrated circuits," IEEE Photon. Techol. Letts. 19, 1469-1471 (2007).

2006 (1)

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, D. J. Mowbray, "High-performance 1.3 ${\mu{\hbox{m}}}$ InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature," IEE Proc.-Optoelectron. 153, 280-283 (2006).

2000 (1)

G. Park, O. B. Shchekin, D. L. Huffaker, D. G. Deppe, "Submilliamp thresholds and ultra-low threshold current density below room temperature," Electron. Lett. 36, 1283-1284 (2000).

1989 (1)

M. Krakowski, D. Rondi, A. Talneau, Y. Combemale, G. Chevalier, F. Deborgies, P. Maillot, P. Richin, R. Blodeau, L. D'Auria, B. de Gremoux, "Ultra-low-threshold, high bandwidth, very-low-noise operation of 1.52 $\mu{\rm m}$ GaInAsP/InP DFB buried ridge structure laser diodes entirely grown by MOCVD," IEEE J Quantum Electron. 25, 1346-1352 (1989).

1988 (1)

K. Y. Lau, P. L. Derry, A. Yariv, "Ultimate limit in low threshold quantum well GaAlAs semiconductor lasers," Appl. Phys. Lett 52, 88-90 (1988).

1987 (1)

H. Z. Chen, A. Ghaffari, H. Wang, H. Morkoc, A. Yariv, "Low threshold ( $\sim 600\ {\rm A/cm}^{2}$ at room temperature) GaAs/AlGaAs lasers on Si(100)," Appl. Phys. Lett 51, 1320-1321 (1987).

Appl. Phys. Lett (2)

K. Y. Lau, P. L. Derry, A. Yariv, "Ultimate limit in low threshold quantum well GaAlAs semiconductor lasers," Appl. Phys. Lett 52, 88-90 (1988).

H. Z. Chen, A. Ghaffari, H. Wang, H. Morkoc, A. Yariv, "Low threshold ( $\sim 600\ {\rm A/cm}^{2}$ at room temperature) GaAs/AlGaAs lasers on Si(100)," Appl. Phys. Lett 51, 1320-1321 (1987).

Electron. Lett. (1)

G. Park, O. B. Shchekin, D. L. Huffaker, D. G. Deppe, "Submilliamp thresholds and ultra-low threshold current density below room temperature," Electron. Lett. 36, 1283-1284 (2000).

IEE Proc.-Optoelectron. (1)

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, D. J. Mowbray, "High-performance 1.3 ${\mu{\hbox{m}}}$ InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature," IEE Proc.-Optoelectron. 153, 280-283 (2006).

IEEE J Quantum Electron. (1)

M. Krakowski, D. Rondi, A. Talneau, Y. Combemale, G. Chevalier, F. Deborgies, P. Maillot, P. Richin, R. Blodeau, L. D'Auria, B. de Gremoux, "Ultra-low-threshold, high bandwidth, very-low-noise operation of 1.52 $\mu{\rm m}$ GaInAsP/InP DFB buried ridge structure laser diodes entirely grown by MOCVD," IEEE J Quantum Electron. 25, 1346-1352 (1989).

IEEE Photon. Techol. Letts. (1)

B. Docter, T. Segawa, T. Kakitsuka, S. Matsuo, T. Ishii, Y. Kawaguchi, Y. Kondo, H. Suzuki, F. Karouta, M. K. Smit, "Short cavity DBR laser using vertical groove gratings for large-scale photonic integrated circuits," IEEE Photon. Techol. Letts. 19, 1469-1471 (2007).

Other (6)

A. E. Siegman, Lasers (University Science Books, 1986).

Bellcore standardIntroduction to Reliability of Laser Diodes and Modules Special Report SR-TSY-001369 http://telecom-info.telcordia.com/ido/AUX/SR_TSY_001369_TOC.i01.pdf available for purchase .

The Differences Between Threshold Current Calculation Methods ILX Lightwave Application Note # 12 http://www.ilxlightwave.com/appnotes/AN_12_REV01_Differences_Between_Threshold_Current_Calculations.pdf.

C. McMahon, D. M. Kane, J. P. Toomey, J. S. Lawrence, "High accuracy measurement of relaxation oscillation frequency in heavily damped quantum well lasers," Proc. Int. Conf. Nanosci. Nanotechnol. (2006) pp. 497-500.

K. Petermann, Laser Diode Modulation and Noise, Advances in Optoelectronics (Kluwer, 1988) pp. 79-80.

Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.