Abstract

In this paper, we report, for the first time, on the effects of two counterpropagating laser beams in a passive ring resonator to be used as a key element of an integrated optical angular velocity sensor, in order to optimize the design of the whole sensor. The ring resonator is modeled and the analytical expressions of the power transfer function for both drop- and through-port configurations are derived. At both drop and through ports, the two counterpropagating beams provide an increase of the amplitude of the transfer function, while at the through port, we observed also a mode suppression due to a physical effect similar to the Vernier effect. A parametric analysis has been carried out to optimize the sensor design. A minimum angular velocity as low as a few degrees per hour has been achieved, which is suitable for aerospace applications.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, "The ring laser gyro," Rev. Modern Opt. 57, 61-104 (1985).
  2. R. B. Smith, Selected Papers on Fiber Optic Gyroscope (SPIE, 1989).
  3. M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, "Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications," J. Lightw. Technol. 19, 1476-1494 (2001).
  4. K. Suzuki, K. Takiguchi, K. Hotate, "Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit," IEEE J. Lightw. Technol. 18, 66-72 (2000).
  5. H. Ma, X. Zhang, Z. Jin, C. Ding, "Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique," Opt. Eng. 45, (2006) 080506.1.
  6. M. N. Armenise, C. Ciminelli, F. De Leonardis, V. M. N. Passaro, "Quantum effects in new integrated optical angular velocity sensors," Proc. Int. Conf. Space Opt. (2004) pp. 595-597.
  7. L. N. Binh, N. Q. Ngo, S. F. Luk, "Graphical representation and analysis of the Z-shaped double-coupler optical resonator," J. Lightw. Technol. 11, 1782-1792 (1993).
  8. C. J. Kaalund, G. D. Peng, "Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications," J. Lightw. Technol. 22, 1548-1559 (2004).
  9. R. Grover, P. P. Absil, T. A. Ibrahim, P. T. Ho, "III-V semiconductor optical micro-ring resonators," Proc. AIP Conf. Int. School Quantum Electron./39th Course (2004) pp. 110-129.
  10. D. G. Rabus, Integrated Ring Resonator. The Compedium (Springer-Verlag, 2007).
  11. J. Schuer, "Direct rotation-induced intensity modulation in circular Bragg micro-lasers," Opt. Exp. 15, 15053-15059 (2007).
  12. J. Schuer, A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901-1-053901-4 (2006).
  13. B. Z. Steinberg, J. Scheuer, A. Boag, "Rotation induced super structure in slow-light waveguides with mode degeneracy," J. Opt. Soc. Amer. B 24, 1216-1224 (2007).
  14. S. Sunada, T. Harayama, "Design of resonant microcavities: Application to optical gyroscopes," Opt. Exp. 15, 16245-16254 (2007).
  15. T. Harayama, S. Sunada, T. Miyasaka, "Wave chaos in rotating optical cavities," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 76, 016212-1-016212-4 (2007).
  16. J. Ctyroky, I. Richter, M. Sinor, "Dual resonance in a waveguide-coupled ring microresonator," Opt. Quantum Electron. 38, 781-797 (2006).
  17. M. A. Popovic, C. Manolatou, M. R. Watts, "Coupled_induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Exp. 14, 1208-1222 (2006).
  18. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis (Wiley Interscience, 1999).
  19. G. Barbarossa, A. M. Matteo, M. N. Armenise, "Theoretical analysis of triple-coupler ring-based optical guided-wave resonator," J. Lightw. Technol. 13, 148-157 (1995).

2007 (4)

J. Schuer, "Direct rotation-induced intensity modulation in circular Bragg micro-lasers," Opt. Exp. 15, 15053-15059 (2007).

B. Z. Steinberg, J. Scheuer, A. Boag, "Rotation induced super structure in slow-light waveguides with mode degeneracy," J. Opt. Soc. Amer. B 24, 1216-1224 (2007).

S. Sunada, T. Harayama, "Design of resonant microcavities: Application to optical gyroscopes," Opt. Exp. 15, 16245-16254 (2007).

T. Harayama, S. Sunada, T. Miyasaka, "Wave chaos in rotating optical cavities," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 76, 016212-1-016212-4 (2007).

2006 (4)

J. Ctyroky, I. Richter, M. Sinor, "Dual resonance in a waveguide-coupled ring microresonator," Opt. Quantum Electron. 38, 781-797 (2006).

M. A. Popovic, C. Manolatou, M. R. Watts, "Coupled_induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Exp. 14, 1208-1222 (2006).

J. Schuer, A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901-1-053901-4 (2006).

H. Ma, X. Zhang, Z. Jin, C. Ding, "Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique," Opt. Eng. 45, (2006) 080506.1.

2004 (1)

C. J. Kaalund, G. D. Peng, "Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications," J. Lightw. Technol. 22, 1548-1559 (2004).

2001 (1)

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, "Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications," J. Lightw. Technol. 19, 1476-1494 (2001).

2000 (1)

K. Suzuki, K. Takiguchi, K. Hotate, "Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit," IEEE J. Lightw. Technol. 18, 66-72 (2000).

1995 (1)

G. Barbarossa, A. M. Matteo, M. N. Armenise, "Theoretical analysis of triple-coupler ring-based optical guided-wave resonator," J. Lightw. Technol. 13, 148-157 (1995).

1993 (1)

L. N. Binh, N. Q. Ngo, S. F. Luk, "Graphical representation and analysis of the Z-shaped double-coupler optical resonator," J. Lightw. Technol. 11, 1782-1792 (1993).

1985 (1)

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, "The ring laser gyro," Rev. Modern Opt. 57, 61-104 (1985).

IEEE J. Lightw. Technol. (1)

K. Suzuki, K. Takiguchi, K. Hotate, "Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit," IEEE J. Lightw. Technol. 18, 66-72 (2000).

J. Lightw. Technol. (4)

L. N. Binh, N. Q. Ngo, S. F. Luk, "Graphical representation and analysis of the Z-shaped double-coupler optical resonator," J. Lightw. Technol. 11, 1782-1792 (1993).

C. J. Kaalund, G. D. Peng, "Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications," J. Lightw. Technol. 22, 1548-1559 (2004).

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, "Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications," J. Lightw. Technol. 19, 1476-1494 (2001).

G. Barbarossa, A. M. Matteo, M. N. Armenise, "Theoretical analysis of triple-coupler ring-based optical guided-wave resonator," J. Lightw. Technol. 13, 148-157 (1995).

J. Opt. Soc. Amer. B (1)

B. Z. Steinberg, J. Scheuer, A. Boag, "Rotation induced super structure in slow-light waveguides with mode degeneracy," J. Opt. Soc. Amer. B 24, 1216-1224 (2007).

Opt. Eng. (1)

H. Ma, X. Zhang, Z. Jin, C. Ding, "Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique," Opt. Eng. 45, (2006) 080506.1.

Opt. Exp. (3)

S. Sunada, T. Harayama, "Design of resonant microcavities: Application to optical gyroscopes," Opt. Exp. 15, 16245-16254 (2007).

J. Schuer, "Direct rotation-induced intensity modulation in circular Bragg micro-lasers," Opt. Exp. 15, 15053-15059 (2007).

M. A. Popovic, C. Manolatou, M. R. Watts, "Coupled_induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Exp. 14, 1208-1222 (2006).

Opt. Quantum Electron. (1)

J. Ctyroky, I. Richter, M. Sinor, "Dual resonance in a waveguide-coupled ring microresonator," Opt. Quantum Electron. 38, 781-797 (2006).

Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. (1)

T. Harayama, S. Sunada, T. Miyasaka, "Wave chaos in rotating optical cavities," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 76, 016212-1-016212-4 (2007).

Phys. Rev. Lett. (1)

J. Schuer, A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901-1-053901-4 (2006).

Rev. Modern Opt. (1)

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, "The ring laser gyro," Rev. Modern Opt. 57, 61-104 (1985).

Other (5)

R. B. Smith, Selected Papers on Fiber Optic Gyroscope (SPIE, 1989).

M. N. Armenise, C. Ciminelli, F. De Leonardis, V. M. N. Passaro, "Quantum effects in new integrated optical angular velocity sensors," Proc. Int. Conf. Space Opt. (2004) pp. 595-597.

R. Grover, P. P. Absil, T. A. Ibrahim, P. T. Ho, "III-V semiconductor optical micro-ring resonators," Proc. AIP Conf. Int. School Quantum Electron./39th Course (2004) pp. 110-129.

D. G. Rabus, Integrated Ring Resonator. The Compedium (Springer-Verlag, 2007).

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis (Wiley Interscience, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.