Abstract

A novel two-dimensional photonic crystal slab waveguide based on an antiresonant reflecting optical waveguide (ARROW) structure is proposed and designed. Lightwaves propagating in this waveguide are confined by antiresonance reflection vertically and the photonic band gap laterally. In order to obtain the characteristics of the ARROW-based photonic crystal waveguides, the three-dimensional finite-difference time-domain simulations are performed. With a lateral adiabatic taper, a coupling efficiency of 80.3% from a single-mode fiber to the ARROW-based photonic crystal waveguide of a single-line defect is obtained. In addition, propagation losses less than 10 dB/mm and bend losses of 0.23 and 0.39 dB/bend for the designed 60$^{\circ}$ and 120$^{\circ}$ bends are achieved at an operating wavelength of $1.55~\mu{\hbox {m}}$.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic slabs," Phys. Rev. Lett. 87, 253902-1-253902-2 (2001).
  2. S. J. McNab, N. Moll, Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).
  3. M. Settle, M. Salib, A. Michaeli, T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193 nm optical lithography," Opt. Express 14, 2440-2445 (2006).
  4. M. V. Kotlyar, T. Karle, M. D. Settle, L. O'Faolain, T. F. Krauss, "Low-loss photonic crystal defect waveguides in InP," Appl. Phys. Lett. 84, 3588-3590 (2004).
  5. J. Zimmermann, H. Scherer, M. Kamp, S. Deubert, J. P. Reithmaier, A. Forchel, R. März, S. Anand, "Photonic crystal waveguides with propagation losses in the 1 dB/mm range," J. Vac. Sci. Technol. B 22, 3356-3358 (2004).
  6. A. Chutinan, S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
  7. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).
  8. A. Chutinan, M. Okano, S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).
  9. B. Miao, C. Chen, S. Shi, J. Murakowski, D. W. Prather, "High-efficiency broad-band transmission through a double-60$^{\circ}$ bend in a planar photonic crystal single-line defect waveguide," IEEE Photon. Technol. Lett. 16, 2469-2471 (2004).
  10. L. H. Frandsen, A. Harpøth, P. I. Borel, M. Kristensen, "Broadband photonic crystal waveguide 60$^{\circ}$ bend obtained utilizing topoloy optimization," Opt. Express 12, 5916-5921 (2004).
  11. P. I. Borel, A. Harpoth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004).
  12. S. Fasquel, X. Mélique, O. Vanbésien, D. Lippens, "Three-dimensional calculation of propagation losses in photonic crystal waveguides," Opt. Commun. 246, 91-96 (2005).
  13. T. D. Happ, M. Kamp, A. Forchel, "Photonic crystal tapers for ultracompact mode conversion," Opt. Lett. 26, 1102-1104 (2001).
  14. D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, D. Pustai, "High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide," Opt. Lett. 27, 1601-1603 (2002).
  15. P. E. Barclay, K. Srinivasan, M. Borselli, O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Opt. Lett. 85, 4-6 (2004).
  16. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si mutilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
  17. T. Baba, Y. Kokubun, "Dispersion and radiation loss charateristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions," IEEE J. Quantum Electron. 28, 1689-1790 (1992).
  18. T. Zijlstra, E. van der Drifta, M. J. A. de Dood, E. Snoeks, A. Polman, "Fabrication of two-dimensional photonic crystal waveguides for $1.5~\mu{\hbox {m}}$ in silicon by deep anisotropic dry etching," J. Vac. Sci. Technol. B 17, 2734-2739 (1999).
  19. S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, P. R. Villeneuve, "Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides," Opt. Lett. 25, 1550-1552 (2000).
  20. C. Sauvan, P. Lalanne, J. C. Rodier, J. P. Hugonin, A. Talneau, "Accurate modeling of line-defect photonic crystal waveguides," IEEE Photon. Technol. Lett. 15, 1243-1245 (2003).
  21. A. Morand, C. Robinson, Y. Désières, T. Benyattou, P. Benech, O. Jacquin, M. Le Vassor d'Yerville, "3-D numerical modeling of propagation losses of a single line-defect photonic crystal," Opt. Commum. 221, 353-357 (2003).
  22. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in the photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
  23. Y. Zhang, B. Li, "Ultracompact waveguide bends with simple toplogy in two-dimensional photonic crystal slabs for optical communication wavelengths," Opt. Lett. 32, 787-789 (2007).

2007 (1)

2006 (1)

2005 (1)

S. Fasquel, X. Mélique, O. Vanbésien, D. Lippens, "Three-dimensional calculation of propagation losses in photonic crystal waveguides," Opt. Commun. 246, 91-96 (2005).

2004 (6)

B. Miao, C. Chen, S. Shi, J. Murakowski, D. W. Prather, "High-efficiency broad-band transmission through a double-60$^{\circ}$ bend in a planar photonic crystal single-line defect waveguide," IEEE Photon. Technol. Lett. 16, 2469-2471 (2004).

L. H. Frandsen, A. Harpøth, P. I. Borel, M. Kristensen, "Broadband photonic crystal waveguide 60$^{\circ}$ bend obtained utilizing topoloy optimization," Opt. Express 12, 5916-5921 (2004).

P. I. Borel, A. Harpoth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004).

P. E. Barclay, K. Srinivasan, M. Borselli, O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Opt. Lett. 85, 4-6 (2004).

M. V. Kotlyar, T. Karle, M. D. Settle, L. O'Faolain, T. F. Krauss, "Low-loss photonic crystal defect waveguides in InP," Appl. Phys. Lett. 84, 3588-3590 (2004).

J. Zimmermann, H. Scherer, M. Kamp, S. Deubert, J. P. Reithmaier, A. Forchel, R. März, S. Anand, "Photonic crystal waveguides with propagation losses in the 1 dB/mm range," J. Vac. Sci. Technol. B 22, 3356-3358 (2004).

2003 (3)

S. J. McNab, N. Moll, Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003).

C. Sauvan, P. Lalanne, J. C. Rodier, J. P. Hugonin, A. Talneau, "Accurate modeling of line-defect photonic crystal waveguides," IEEE Photon. Technol. Lett. 15, 1243-1245 (2003).

A. Morand, C. Robinson, Y. Désières, T. Benyattou, P. Benech, O. Jacquin, M. Le Vassor d'Yerville, "3-D numerical modeling of propagation losses of a single line-defect photonic crystal," Opt. Commum. 221, 353-357 (2003).

2002 (3)

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).

A. Chutinan, M. Okano, S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).

D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, D. Pustai, "High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide," Opt. Lett. 27, 1601-1603 (2002).

2001 (2)

T. D. Happ, M. Kamp, A. Forchel, "Photonic crystal tapers for ultracompact mode conversion," Opt. Lett. 26, 1102-1104 (2001).

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic slabs," Phys. Rev. Lett. 87, 253902-1-253902-2 (2001).

2000 (2)

A. Chutinan, S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).

S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, P. R. Villeneuve, "Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides," Opt. Lett. 25, 1550-1552 (2000).

1999 (1)

T. Zijlstra, E. van der Drifta, M. J. A. de Dood, E. Snoeks, A. Polman, "Fabrication of two-dimensional photonic crystal waveguides for $1.5~\mu{\hbox {m}}$ in silicon by deep anisotropic dry etching," J. Vac. Sci. Technol. B 17, 2734-2739 (1999).

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in the photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).

1992 (1)

T. Baba, Y. Kokubun, "Dispersion and radiation loss charateristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions," IEEE J. Quantum Electron. 28, 1689-1790 (1992).

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si mutilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).

Appl. Phys. Lett. (4)

M. V. Kotlyar, T. Karle, M. D. Settle, L. O'Faolain, T. F. Krauss, "Low-loss photonic crystal defect waveguides in InP," Appl. Phys. Lett. 84, 3588-3590 (2004).

M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).

A. Chutinan, M. Okano, S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si mutilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).

IEEE J. Quantum Electron. (1)

T. Baba, Y. Kokubun, "Dispersion and radiation loss charateristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions," IEEE J. Quantum Electron. 28, 1689-1790 (1992).

IEEE Photon. Technol. Lett. (2)

B. Miao, C. Chen, S. Shi, J. Murakowski, D. W. Prather, "High-efficiency broad-band transmission through a double-60$^{\circ}$ bend in a planar photonic crystal single-line defect waveguide," IEEE Photon. Technol. Lett. 16, 2469-2471 (2004).

C. Sauvan, P. Lalanne, J. C. Rodier, J. P. Hugonin, A. Talneau, "Accurate modeling of line-defect photonic crystal waveguides," IEEE Photon. Technol. Lett. 15, 1243-1245 (2003).

J. Vac. Sci. Technol. B (2)

J. Zimmermann, H. Scherer, M. Kamp, S. Deubert, J. P. Reithmaier, A. Forchel, R. März, S. Anand, "Photonic crystal waveguides with propagation losses in the 1 dB/mm range," J. Vac. Sci. Technol. B 22, 3356-3358 (2004).

T. Zijlstra, E. van der Drifta, M. J. A. de Dood, E. Snoeks, A. Polman, "Fabrication of two-dimensional photonic crystal waveguides for $1.5~\mu{\hbox {m}}$ in silicon by deep anisotropic dry etching," J. Vac. Sci. Technol. B 17, 2734-2739 (1999).

Opt. Commum. (1)

A. Morand, C. Robinson, Y. Désières, T. Benyattou, P. Benech, O. Jacquin, M. Le Vassor d'Yerville, "3-D numerical modeling of propagation losses of a single line-defect photonic crystal," Opt. Commum. 221, 353-357 (2003).

Opt. Commun. (1)

S. Fasquel, X. Mélique, O. Vanbésien, D. Lippens, "Three-dimensional calculation of propagation losses in photonic crystal waveguides," Opt. Commun. 246, 91-96 (2005).

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. B (1)

A. Chutinan, S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).

Phys. Rev. Lett. (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic slabs," Phys. Rev. Lett. 87, 253902-1-253902-2 (2001).

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in the photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.